Mariners Weather Log

Vol. 46, No. 2

Midshipman Jeff Musk conducting a map discussion using the surface and 500 mb maps of the North Atlantic.
(See Marine Weather Reporting at Maine Maritime Academy p. 8)

Mariners Weather Log

Mariners Weather Log

U.S. Department of Commerce Donald L. Evans, Secretary

VADM Conrad C. Lautenbacher, Jr. (USN-Ret.) Under Secretary of Commerce for Oceans and Atmosphere

National Weather Service
Brig. Gen. John J. Kelly, Jr. (USAF-Ret.) Assistant Administrator for Weather Services

Editorial Supervisor
Robert A. Luke
Editor
Bernadette Duet
Layout/Design
Tony Castelluci
Bernadette Duet
Patti Geistfeld
Stuart Hayes

Articles, Photographs, and Letters should be sent to:
Mr. Robert A. Luke, Editorial Supervisor
Mariners Weather Log
NDBC (W/OPS 52)
Bldg 1100, Room 353D
Stennis Space Center, MS 39529-6000
Phone: (228) 688-1457 Fax: (228) 668-3153
E-Mail: robert.luke@noaa.gov

From The Editorial Supervisor

Hello, and welcome to another issue of the Mariners Weather Log (MWL). It has been some time since we last chatted, and a lot of things have happened. In the past issue, we talked about a pillar of the VOS program, Mr. Jim Nelson, retiring as Port Meteorological Officer (PMO) in Houston. Since then, we have welcomed aboard a new family member, Mr. Chris Fakes, who signed on to take over the daunting tasks left in the wake of Jim's departure. Chris comes to us with nearly 30 years of experience as a Navy Meteorologist, so he should fit in nicely into this rogues' gallery. Although he was too shy to record his life story in this issue, perhaps he can be persuaded to provide his biography for the next issue.
And while we are on the topic of departing and arriving personnel, we need to say goodbye to Mr. Lynn Chrystal, who did a stellar job as a part-time PMO up in Kodiak, AK. But, we did not leave this vital duty vacant. No-Siree! I want to welcome Ms. Debra Russell as our new PMO in Kodiak. Debra comes to us from King Salmon, AK and has already been doing an outstanding job in support of VOS. (See story on p .7)
Speaking of change, it is time for you to help us make the MWL better. Please take the time to fill out the questionnaire found on p. 3 and mail it back in to us. We look forward to hearing from you to see what course you want the MWL to steer.
Other offerings this issue include a great but tragic story of the recent events onboard the GALAXY in the Bering Sea, a new training technique at the Maine Maritime Academy, and some noteworthy analysis reports from the Marine Prediction Center. You will also see the return of the Cooperative Ship Report on page 90. This National Climatic Data Center (NCDC) statistical report has been modified and tested, and is once again operational.
So, please grab a cup of coffee, find a comfy place to sit, and enjoy our offering of the MWL.
Happy Holidays! - Luke

Some Important Web Page Addresses	
NOAA	http://www.noaa.gov
National Weather Service	http://www.nws.noaa.gov
National Data Buoy Center	http://www.ndbc.noaa.gov
AMVER Program	http://www.amver.com
VOS Program	http://www.vos.noaa.gov
SEAS Program	http://seas.nos.noaa.gov/seas/
Mariners Weather Log	http://www.nws.noaa.gov/om/
	mwl/mwl.htm
Marine Dissemination	http://www.nws.noaa.gov/om/
	marine/home.htm
U.S. Coast Guard	http://www.navcen.uscg.gov/
Navigation Center	marcomms/
See these Web pages for further links.	

Some Important Web Page Addresses

National Weather Service
National Data Buoy Center
ER Program
SEAS Progrm
Mariners Weather Log
Marine Dissemination
U.S. Coast Guard

See these Web pages for further links.

2002 Mariners Weather Log (MWL) Reader's Questionnaire

We want to hear from you!

So we can better serve you in the future, please let us know how we are doing by completing this short questionnaire. Thank you for your feedback.

Please rate the MWL on the following features:

1. What is your favorite column or type of article?
\square like them all. It would have to be this one: \qquad
2. What's your least favorite article in the MWL?
\square They are all good. It would have to be this one: \qquad
3. Is the content of the MWL relevant and useful?
\square Strongly Agree \square Agree \square Disagree \square Strongly Disagree \square No Opinion
4. Ease of Reading the articles: ($1=$ poor, $5=$ excellent)

5. Organization/layout($1=$ poor, $5=$ excellent $)$

6. How did you first bem about the MWL?
\square Word of Mouth
\square Port Meteorological Officer (PMO)
Saw it aboard Ship or other place of business
\square Conference/Trade Show
Please rank the MWL departments or topics in order of importance: ($1=$ poor, $5=$ excellent)
Great Lakes Wrecks
Physical Oceanography
Marine Biology
VOS Cooperative Ship Reports
VOS New Recruit List
VOS Award Photos
Marine Weatber Review
Climate Predication Center Charts
Historical Articles
Special Feature Articles
Coastal Forecast Office News
7. Would an electronic version of the MWL be useful to you?
\square Strongly Agree \square Agree
\square Disagree
Strongly DisagreeNo Opinion
8. Do you currently have internet capability to access an online MWL?
\square Yes
\square No
\square No, but I will soon
9. What electronic format would best fit your needs? :($1=$ Strongly Disagree, $5=$ Strongly Agree)

Single downloadable PDF file
Multiple downloadable PDF file (per article)
Fully Integrated HTML. Webazine
No electronic version - Keep the hard copy
11. Overall, how satisfied are you with the MWL? ($1=$ poor, $5=$ excellent $)$

1	2	3	4	5
\square	\square	\square	\square	\square

12. Is you mailing address correct? If changes needed, please let us know.
13. Comments:

Mariners Weather Log

Fold Here and Scal with Tage an Botnom
U.S. Department of Commerce

Natonal Oceanic and Atmospheric Administration
National Data Buoy Center
Building 1100, Room 353D
Stennis Space Center, MS 39529-6000
ATTN: Mariners Weather Log
OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

Mr. Robert A. Luke, Editorial Supervisor
Mariners Weather Log
NDBC (W/OPS 52)
Bldg 1100, Room 353D
Stennis Space Center, MS 39529-6000

Mariners Weather Log

Table of Contents

Galaxy Explodes, Weather Fights Rescue 6
New PMO in Alaskan Office 7
Marine Weather Reporting at Maine Maritime Academy 8
The Gust Factor During Hurricanes as Measured by NDBC Buoys 12
Characteristics of the Gust Factor Measured by C-MAN Stations During Hurricane Georges 12
Servicing NOAA Buoys on the Central California Coast 14
Wind/Wave Damage Along the SW Cape Coast 24-25 May 2002 18
Shipwreck: Maurice Desgagnes 19
Gdynia PMO Retires after 45 Years 99
Departments:
Marine Weather Review
North Atlantic, January - April 2002 20
North Pacific, January - April 2002 38
North Atlantic, May - August 2002 49
North Pacific, May - August 2002 58
Mean Circulation Highlights and Climate Anomalies, March - August 2002 68
Tropical Atlantic and Tropical East Pacific, January -April 2002 71
Coastal Forecast Office News
Canadian VOS Program Special Award 79
Alaska Awards 80
VOS Program
New Recruits 84
VOS Awards 85
VOS Cooperative Ship Reports 90
Meteorological Services-Observations 100

Galaxy Explodes

"Galaxy" Explodes, Weather Fights Rescue

Tony Castelluci and
USCG Public Affairs Office, Kodiak, Alaska

On 20 October 2002, the large fishing vessel Galaxy sent a mayday reporting that the ship had exploded while sailing in the Bering Sea.

The U.S. Coast Guard (USCG)

Kodiak Station received the call at 4:30 pm AST that Sunday in which a Galaxy crewmember reported that the vessel exploded and caught fire, forcing the crew to prepare to abandon ship.

Three Galaxy crew members became trapped in the wheelhouse, and three others couldn't escape from the bow, prompting a USCG helicopter crew to hoist the six people to safety, but the rest of the crew jumped into the cold water. Many of the men who went overboard were not wearing survival suits. Two of the twenty-six men who were aboard the Galaxy when it exploded are still missing, and one has been reported dead.

USCG PAO Lt. Jim Zawrotny said, "It was scary, knowing these people were out on a boat [in cold water] where their choice was to freeze or to burn."

The USCG, along with the 210th Rescue Squadron of the Alaska Air National Guard, the U.S. Air Force, and the fishing vessels Glacier Bay, Blue Pacific, and Clipper Express, searched for over 50 hours for the two missing men before the USCG suspended its search at 7 p.m. Tuesday, 22 October 2002.

Tragically, a crewman from the Clipper Express, assisting in the
search of the missing Galaxy crewmen, had fallen overboard at around 10 a.m. AST that day about 90 miles south of St. Paul Island.

The Clipper
Express was on its way to Dutch Harbor to off-load two Galaxy crewmen they had picked up Sunday evening. At
the time that the Clipper Express lost a crewman, it was braving 30 -foot seas and 50-60 knot winds as it sailed to bring survivors to safety. It is believed Daniel Schmiedt of the Clipper Express went missing after being struck by a rogue wave during the rescue.

To help locate the missing Clipper Express crewman, U.S. Coast Guard rescue crews diverted one of the two USCG helicopters in the Galaxy search area south. The USCG and the Clipper Express searched for over 10 hours for Schmiedt, and the Coast Guard suspended its search at $8: 15$ p.m. AST Tuesday, 22 October 2002.

Chief Petty Officer Marsha Delaney was aboard a Coast Guard C-130 that supported and then took part in the

The burnt hull of the Galaxy drifts aimlessly in Alaskan waters. USCG Rescue Squadron Kodiak led the rescue.
(Official U.S. Coast Guard photo courtesy of LT. Dave Wierenga, Air Station Kodiak and Petty Officer Carlene Adams, Long Range Navigation Station, St. Paul Island) rescue efforts for the Galaxy.
"According to initial interviews with the crew [survivors of the Galaxy], the fire engulfed the ship so fast that split second decisions had to be made about jumping into cold water without survival suits," Chief Delaney said.

During the rescue, the weather became a problem. "We were getting thrown around pretty bad up there." Delaney said.

To complicate things for the search, there was no fuel available for aircraft at St. Paul Island. The C-130 that Chief Delaney was aboard first had to deliver fuel to St. Paul Island to refuel two H-60, and one H-65 helicopters before continuing to help with the search.

Galaxy Explodes

The USGC Cutter Jarvis based in Honolulu Hawaii, was in the area and sent its H-65 "Dolphin" helicopter to assist in the rescue. As the weather turned foul during the rescue, it soon became apparent that the helicopter would be unable to return to the Jarvis, so the H-65's crew landed in St. Paul and spent the night.

Details regarding what caused the explosion had not been released at the time this issue was in production.

From Galveston Bay to the Prince William Sound - It's closer than you think...

By Robert Luke VOS Program Lead

Okay, so now you are thinking, What do the the beaches of Texas and the rocky shores of Alaska have in common? The latest answer is Debra Russell. Debra recently took over the duties as the Official in Charge and Port Meteorological Officer (PMO) in sunny Valdez, Alaska. Previously, Debra was supporting the folks up in King Salmon with all their weather needs.

Some might think it is a stretch to go from south Texas up to Alaska, but not for Debra. From her early days as a Galveston Ball High School Tornado, Debra was destined to be involved with the weather. Like most young people, Debra searched for a place to fit in and call home. As she put it, "I am not a cowgirl, and I don't have big hair," so when the U.S. Navy mailed her an "It's not just a job. It's an adventure" brochure, Debra was hooked. It was the lure of those snazzy uniforms and images of ships cutting into the waves with the swell and spray going everywhere that started Debra on her quest for adventure.
After basic training in Florida, Debra
joined the fleet in Vallejo, CA on the Navy Tug Dekaury (YTM-178). In her spare time between swabbing decks, scraping barnacles and getting to know way too much about Brasso; Debra dreamed of becoming an Aerographer Mate (ok, Navy weather guesser to the civilian folks). Well, she got her wish and was transferred to the "beautiful" corn fields of Rantoul, Illinois for basic weather school. And you thought the Navy adventure was a myth. Debra's first tour in Navy weather was at a lovely little hideaway called Adak, Alaska. This jewel of a tour is where the Debra got bit by the Alaska bug (among others). Debra felt a sense of home and craved the challenge in the Alaskan environment. The Navy moved her to Guam (talk about climate changes) and then back to the Texas beaches at Corpus Christi.

In 1991, the call of the wild (ok maybe it was the moose or caribou) got the best of Debra, and she left the Navy to strike out on her own. It took over a year atop Stampede Pass, Washington to re-acclimate herself to the northern environment, but then the National

A Texan in Alaska. Debra Russell, Port Meteorological Officer, in sunny Valdez, Alaska.
Weather Service finally realized that Debra has a lot to offer (she had weather experience and she WANTED to go to Alaska), so they shipped her up to McGrath. Since then, she has been a solid (yet slightly frozen) fixture in Yakutat, Anchorage, King Salmon and now Valdez.

Life is an adventure, but Debra has been blessed. She has gotten the chance to live out her dreams, surrounded by all her loves: her family, the marine community, and the great Alaskan spirit. Who says you cannot go home again...
Welcome Aboard Debra - Luke \$

Marine Weather Reporting at Maine Maritime Academy, a New Course, a New Approach

Captain G. Andy Chase
Professor of Marine Transportation
Maine Maritime Academy

"We've got strong meridional flow. Basically everything is flowing around this very large High in the mid-Pacific. This large trough will be digging rapidly over the next two or three days. We have the M/V
Eisenhower going from San Francisco to Yokohama. This system has been building slowly, but looks like it might intensify rapidly now. This storm is forecast to produce nine meter seas, and 50 knot winds. On Wave Watch the storm shows up very well, showing it forming quickly."
"We've been passing under the High, so we've had following winds pretty much the whole way, so far. We'll keep going south for a while. It's basically the sailing ship route, and it's been working well for us so far this trip."
"We're going from Surigao Straits to Los Angeles, on the M/V Richard T. Matthiesen, fully loaded. We're going to follow the great circle track for now. We're ahead of schedule so far. We are still well south of the 5640 meter line on the 500 millibar map. We're thinking the 500 millibar flow may be moving back toward zonal flow before long. That would put the storm track farther north by later in the week. In that case we can probably stick to the great circle track."
"We have also had pretty good weather so far, we've been pretty lucky. It was a little dicey when we
first started out, but it's good now. We're going from Yokohama to San Francisco. We're on the great circle, and we're already over the top. I think we'll be all right."

You may think that sounds like the operations center of an ocean routing company, but it's not. It is actually coming from a classroom at Maine Maritime Academy, where our future mariners are conducting "virtual voyages."

Every day the students, working in pairs, download a full suite of marine weather fax maps from the National Weather Service's Marine Prediction Center. Studying these maps, they make routing decisions for a chosen ship, or vessel, on a route of their choosing. Twice a week the class meets for two hours, and discussions flow around the room, comparing strategies, successes and failures. When one of these students says "man, did we get hammered last night," they are not referring to a visit to a bar. They are referring to having encountered 30 -foot seas and force-10 winds in the Winter North Atlantic.

The idea for this course sprang from a 5-day course I took in the spring of 2001, sponsored by the Sea Education Association of Wood's Hole, Massachusetts, and conducted by the Maritime Institute of Technology and

Midshipman Jeff Musk conducting a map discussion using the surface and 500 mb maps of the North Atlantic.

Graduate Studies (MITAGS) of Linthicum Heights, Maryland. In this course, entitled Heavy Weather Avoidance, mariners are taught to avoid severe weather by instructors Michael Carr and Lee Chesneau.

I had been teaching Meteorology at Maine Maritime Academy in Castine, Maine for about nine years, and although I was teaching it to mariners, and I am myself a mariner, I have always known that I was not covering enough material on simply interpreting weather maps. Given the time constraints of the course and the necessity of covering the fundamentals of meteorology in that time frame, I only got to spend about three weeks looking at surface

analysis maps, and only about two days looking at the upper level, 500millibar maps.

After taking the course with Michael and Lee, I knew I had to do something about this. Before the five day course was over, I had a rough outline of the course I wanted to develop at Maine Maritime, and I had developed what would be the key component of that course. The one advantage I would have over the MITAGS course would be that I would have the students for fourteen weeks, and this enabled me to run weather routing exercises in real time, using real weather data. I dubbed the idea a "Virtual Voyage" and decided to prepare the whole course around that concept.

The Virtual Voyage goes like this: The students pair up and choose a ship they would like to operate. Since we have a mix of students who are working toward 200-ton, 500-ton, and unlimited tonnage licenses, some will choose large ships and some will choose smaller vessels including tugs, yachts and even sailing vessels. With the ship chosen, they write up a discussion of the ship's characteristics, including whether or not they have "vulnerable" cargo (such as deck cargo), an approximation of the vessel's stability characteristics, the applicable load line zones they will transit, and any particular issues their ship might have that would affect their routing decisions.

For example, one group is on a car carrier, which is particularly sensitive to seas from ahead or astern, and is most suited to winds and seas on the beam. Another group is routing the Greenpeace ship Rainbow Warrior, which is a 160 -foot auxiliary sail vessel, so they are looking for
favorable sailing conditions. One group is on the Richard T.
Matthiesen, a tanker, loaded, while another group is on the same ship but in ballast. The latter group will have to consider whether or not to take on storm ballast.

They then choose an ocean. For starters, we are working in the North Pacific and North Atlantic, but I hope someone will venture into the Southern Hemispheric waters. Finally they decide on a departure point and a destination. I assign the departure date, and we all get underway at the same time.

The students work on a Pilot Chart, and they start by laying out the leastdistance track, typically the great circle route. They then study any material they can find to plan the route they will actually sail. They use the Sailing Directions; the British Admiralty publication 136, Ocean Passages For The World; various privately published sailing and cruising guides, and any other material they can find. With all of that, they start looking at the real time weather maps about two days prior to departure. On the day of departure they lay down a voyage track that they feel represents the best route for the present conditions.

They then lay down a comparative track. If they are sailing on the great circle track, they use a rhumb line or composite track for comparison. If they decide to sail on a rhumb line, or go well to the south on a "bucket" route, they use the great circle track for comparison. In any event, they must write up a justification for their chosen route. They also prepare an estimated time of arrival (ETA) and a description of the weather they anticipate.

Weather Reporting

For the next couple of weeks, they will plot their ship's position every day at noon GMT, both on their chosen route and on their comparison route. By transferring their position from the Pilot Chart to the surface analysis map, they evaluate the wind conditions they should be encountering. They also transfer their position to the sea state analysis map and determine the sea condition. With this information, they look at a polar velocity plot for the ship they are on and determine the speed they expect to make good in those conditions.

The polar velocity plot is a circular graph of speed made good in various sea conditions. To prepare these I sit down, (either in person or on the phone) with someone who has a significant amount of experience on a particular vessel and ask what speed they would expect to make good in the given conditions. For example, in force- 8 winds and 12-foot seas, the ship might be able to maintain full speed when these conditions are from abaft the beam, but as the wind and seas draw forward of the beam, she might have to reduce from a sea speed of 16 knots to 12 knots. Since this occurs gradually, we will draw a curve that goes from 16 knots to 12 knots as it approaches dead ahead. We do this for various conditions, from calm weather up to force-12 winds and 40 -foot seas. These curves look very different for different types of vessels. See figures 1 and 2. (We do not try to quantify the speed reduction due to wind, even though this can be significant. We simply don't have enough data on these ships to quantify everything, so we use an approximation. On ships with a great deal of windage, I do encourage them to approximate the wind factor, but it will be a rough guess at best.

Figure 1: Polar Velocity Plot for the car carrier Overseas Joyce. This was prepared with help from Mr. Chuck Zenter, Second Mate. In this diagram you will note that although her sea speed is 18 knots in good conditions, she slows down substantially in any head seas. She also slows down in following seas, when her rocking horse motion allows her propeller to emerge and race, causing overspeed trip on her main engine. The concentric circles of the plotting sheet represent ship's speed in 3-knot increments, and the plotting sheet is oriented in a ship's head up orientation like a head up radar display. As an example, note that in a 16to 22 -foot sea, her speed varies from about 7 knots for a head sea, to a maximum of about 13 knots when the seas are just abaft the beam, and then back down to about 11 knots when the seas are from astern.

Once the students have determined the speed they expect to make good in the given conditions, they must allow for the current they are encountering. They pick the currents off the pilot chart and estimate the speed reduction based on the angle at which the current is hitting them. This reduction (or addition, if the current is fair) is taken from (or added to) the speed calculated for wind and waves. They now have a speed of advance.

Since these students have a great deal of other homework to do for other courses, I only require them to perform this operation once per day,
using the 1200 GMT weather map suite. They presume that the speed of advance just calculated will apply for 24 hours. The next day they repeat the process, and so on for the duration of the voyage. After each day's run is plotted, they make a decision to continue on course or deviate to avoid bad weather, adverse currents, or to get a lift from more favorable conditions.

They must perform the same calculations for their comparative route. They slow down or speed up their ship on the comparative route using the same polar diagrams, but

Weather Reporting

they do not deviate from the comparative route. That ship stays on course unless severe weather requires it to heave to or run before the wind and sea.In this way, they have something to measure their success or failure by. At the end of the trip they can see if their decisions brought them to their destination ahead of their comparison ship, or if the comparison ship encountered severe weather that they avoided by their good judgment.

Once they have made all these calculations for the day, they are allowed to fire up their complimentary copies of the Orion routing software, provided by WNI Ocean Routes Inc., and see what a computer solution for their track looks like. This program digests a daily weather data report from Ocean Routes, and runs numerous track solutions to solve for the best route. They are not allowed to change their route based on this information, but they are encouraged to see what another solution looks like. This way, they have yet another track to which to compare their route. They can also run an animation feature in this program which will project their ship and the weather data ahead in time to see how the wind and wave fields will change and affect them down the road.

For their final report, they compile a day by day discussion of their weather analyses and decisions with an overview of the conditions encountered by both ships (theirs and the one on the comparative route). They must summarize the number of days of weather above force 6 , and number of days of reduced speed. If they encountered any severe weather,

Figure 2: Polar Plot for M/V
Richard T.
Matthiesen, in this case in ballast.
This plot was prepared with help from Captain Ralph Pundt, who served as her master for 6 years. Note that in sea conditions of over 16 feet he would not allow his ship to get beam to the seas, and in seas of over 40 feet he would heave to. We also prepared a plot for this same ship when loaded, and naturally it looks quite different.
they must decide if they might have incurred any cargo damage, ship damage, or personal injury to crew or passengers.

These students have concluded that they don't ever want to make a routing decision without having a 500millibar map at hand, and preferably not without a full suite of $500-\mathrm{mb}$, surface, and wind/wave maps, including the analysis, 48- and 96hour forecasts for each. They have become quite adept at glancing over the various maps and picking out the trends, tying the surface features to the $500-\mathrm{mb}$ features, and considering the ramifications of significant wave height versus maximum wave height potential. They know now that they
can use the surface and $500-\mathrm{mb}$ maps to plan for the next 5 days, the 500mb trend to look a couple of days beyond that, and the Pilot Charts for the rest of the voyage.

The students have also discovered the trove of information available to them on the Internet. While this resource is not available to many ships at sea yet, when it is, these mates will know where to look to find QuickScat Scatterometer derived wind fields, Wave Watch III wave model animations going out 10 days, superstructure ice accretion forecasts, and any number of other valuable additions to the basic weather forecast information.

During this course I have been fortunate to have had first class help from the folks at the Marine Prediction Center, MITAGS, WNI Ocean Routes, Inc., Locus Weather, Marine Computer Systems, and others in the private sector who have come all the way to Castine, Maine to give us guest lectures and materials to work with. They are all contributing to preparing these students to be better mates and masters who will make better decisions and bring the next generation of ships into port faster, with less damage, and with the cargo in better condition. \pm

Gust Factor Measurements

The Gust Factor During Hurricanes as Measured by NDBC Buoys

Professor S. A. Hsu
Louisiana State University

The gust factor is defined as the ratio of the maximum (or peak) gust speed to the sustained wind speed. This factor is important for mariners to know, particularly during storms. The purpose of this brief note is to synthesize the gust factor recorded by NDBC buoys during hurricanes.

In order to obtain a large sample from as much spatial variability as possible, a ten-year data set has been compiled in Table 1. The period from 1991 through 2000 was used. The area of
coverage included the Gulf of Mexico and the U.S. Eastern Seaboard from Florida northward to the Gulf of Maine. Buoy measurements included both deep and shallow water locations. The data sets are based on the "Annual Summaries" for Atlantic hurricane seasons as published in the Monthly Weather Review.

In Table 1, the gust factor is obtained from the ratio of peak gust to the sustained wind. The grand mean from all 67 measurements is 1.29 , with a standard deviation of 0.077. The
coefficient of variation (or dispersion), defined as the ratio of the standard deviation to the mean, is approximately 6%. Since these deviations are small, the gust factor of 1.3 based on the 3 tropical storms and 16 hurricanes listed in Table 1 should be useful operationally. For example, if only the wind speed is available, the peak gust can be estimated simply by multiplying the speed by 1.3 during storm conditions.

Characteristics of the Gust Factor Measured by Coastal-M arine Automated Network (C-MAN) Stations During Hurricane Georges in 1998

Professor S. A. Hsu
Louisiana State University

The gust factor is the ratio of peak gust to sustained wind speed. Two questions often asked are: "Does the gust factor increase with wind speed?" and "Does it increase with height?" In order to respond, simultaneous measurements from a large number of stations are needed. Such an opportunity arose during Hurricane Georges in September 1998. The measurements are listed in Table 1, along with the anemometer height for each station. It is evident from this table that the gust
factor does not increase with either height or sustained speed within approximately 20 to 160 ft and 24 to 81 kts.

Between 1400 and 1500 UTC on 25 September 1998, four C-MAN stations along the Florida Keys provided an interesting sub-data set. These four stations were: Molasses Reef (C-MAN MLRF1), Long Key (LONF1), Sombrero Key (SMKF1), and Sand Key (SANF1). When the wind speed increased from 46 kts at

MLRF1 to 81 kts at SMKF1, the gust factor remained virtually the same at both locations, even though the anemometer height at MLRF1 was 52 ft versus 159 ft at SMKF1.

We therefore conclude from the data provided in Table 1 that the gust factor does not increase with either height or speed. Certainly, more data are needed to substantiate this conclusion.

Table 1.
Measured sustained wind and peak gust recorded by NDBC buoys during hurricanes from 1991 through 2000.

Year	Hurricane	Bouy	Peak Gust (kt)	\qquad	Gust Factor
1991	Bob	44009	54	43	1.26
		44012	56	47	1.19
		44025	62	45	1.38
		44008	56	47	1.19
		44013	58	45	1.29
		44005	54	45	1.20
		44007	52	41	1.27
1992	Andrew	42003	62	45	1.38
		41016	35	29	1.21
		42001	29	23	1.26
		42007	47	29	1.62
1994	T.S. Alberto	42036	35	27	1.30
	T. S. Beryl	42036	37	31	1.19
	Gordon	41002	37	35	1.06
		41001	62	47	1.32
		41004	45	35	1.29
1995	Erin	41009	52	41	1.27
		41010	47	35	1.34
		42036	45	35	1.29
		42007	39	29	1.34
	Opal	42001	66	52	1.27
		42003	54	43	1.26
		42007	68	52	1.31
		42036	43	35	1.23
1996	Fran	41004	64	49	1.31
1997	Danny	42007	89	68	1.31
		42040	81	64	1.27
		44004	81	62	1.31
		44008	72	58	1.24
		44014	105	81	1.30
1998	Bonnie	41002	57	42	1.36
		41004	49	38	1.29
		44004	46	36	1.28
		44014	47	37	1.27
	Earl	42040	55	41	1.34
		42039	63	45	1.40
		42036	47	35	1.34
		42002	34	26	1.31
		42001	52	37	1.41
		42007	37	30	1.23

Year	Hurricane	Bouy	Peak Gust (kt)	Sustained Wind (kt)	Gust Factor
	Georges	42003	66	51	1.29
		42039	56	43	1.30
		42036	48	34	1.41
		42040	68	54	1.26
		42007	54	44	1.23
	Mitch	42003	44	37	1.19
		41010	45	37	1.22
1999	Bret	42020	73	58	1.26
	Dennis	41001	63	48	1.31
		41002	59	43	1.37
		41004	72	54	1.33
		41008	43	31	1.39
		41009	37	29	1.28
1999	Dennis	41010	72	57	1.26
		44014	53	43	1.23
	Floyd	41004	72	54	1.33
		41009	70	52	1.35
		41008	31	24	1.29
		41010	91	72	1.26
		44009	52	39	1.33
		44014	66	50	1.32
		44025	43	33	1.30
	Irene	41009	60	45	1.33
2000	Gordon	42003	57	43	1.33
		42036	41	37	1.11
	T.S. Helene	42003	39	32	1.22
		42039	41	31	1.32
Grand Mean					1.29
Standard Deviation					0.077
Coefficient of Variation (or dispersion)					6\%
Number of Measurements					67

Servicing NOAA Buoys

Servicing NOAA Buoys on the Central California Coast

By Jeff Lorens
National Weather Service
Eureka, California

NOAA environmental and oceanographic data buoys provide an invaluable source of data for monitoring weather and wave conditions in the coastal and offshore waters of the United States. The U.S. Coast Guard, in close cooperation with the National Data Buoy Center (NDBC) at Stennis Space Center in Mississippi, maintains responsibility for the servicing of these buoys. In early September 2002, I had an opportunity to ride along on a buoy-servicing trip to see first-hand how the Coast Guard and NDBC accomplish this mission.

Wisconsin, and commissioned on September 28th, 2001, the Aspen is one of the Coast Guard's newest cutters. Following a transit down the St. Lawrence River, down the east coast and through the Panama Canal, the Aspen arrived at it's new home port on December 18th, 2001. Also aboard on this trip were Chief Warrant Officer (CWO3) John Ward (a Coast Guard liaison officer assigned to NDBC), John Blackmon, and Dave Parrett (SAIC technicians; SAIC is the primary contractor under NOAA responsible for buoy maintenance services).

San Francisco Bay with the Golden Gate Bridge in the distance.

Early Monday morning, September 9th, I boarded the USCGC Aspen (WLB-208) at Coast Guard Base San Francisco Bay, located at Yerba Buena Island in San Francisco Bay. Built by Marinette Marine Corp. in Marinette,

The U.S. Coast Guard has responsibility for maintaining aids to navigation in coastal and inland waterways throughout the United States. Although not considered "aids to navigation," the servicing of

NOAA's environmental data buoys is included in this mission (in close coordination with NDBC). Although a relatively small part of the Coast Guard's overall buoy maintenance mission, it is a vital one. On this trip, the Aspen would service three NOAA data buoys off the central California coast, along with two navigational buoys. The three NOAA buoys scheduled for service included Half Moon Bay Buoy (\# 46012), Monterey Bay Buoy (\# 46042), and Cape San Martin Buoy (\# 46028).

Not all buoy servicing missions are alike. In some cases, new buoys are deployed for the first time, while others are re-deployed after having broken their mooring and gone adrift. In both cases, the deployment involves putting a large concrete sinker on the ocean bottom, which serves to anchor the buoy in position. For this trip, each buoy would be replaced on-site with a completely reconditioned buoy, with one day scheduled for each.

The servicing operation actually begins at NDBC's facility at Stennis Space Center, which schedules periodic (emergency in some cases) data buoy servicing missions with the Coast Guard. It is here that buoys previously delivered from other servicing missions are overhauled, outfitted, and tested. The reconditioned buoys are then carried across country by flatbed truck to the port, lifted on board Coast Guard buoy tenders by crane and secured to the deck. The Aspen, with a beam of 46 feet, can carry three of the 3-meter

discus buoys (side by side) to be serviced on this trip. Once on-site at each location, the buoy in the water would be hauled aboard and replaced with a re-conditioned buoy. Although each of these buoys was of the same basic design, each was unique due to some slight (but significant) differences in instrumentation and configuration. Each was therefore designated to replace a specific buoy. In fact, each of the "new" buoys already had it's number painted on before it arrived at the port (e.g. the "old" buoy \# 46012 would be replaced by the "new" \# 46012).

The first of the NOAA buoys on the schedule was \# 46012, located just off the California coast about half way between San Francisco and Monterey Bay. Weather conditions on this day were nearly ideal, with a clear blue sky, northwest winds at 5-10 knots, and a 3-4 foot swell with periods of $17-20$ seconds. Weather and sea conditions are absolutely critical to buoy maintenance operations. If the seas become too rough, conditions can quickly turn unsafe for the deck crew. These buoys weigh between 3,500 and 4,000 pounds and provide more than sufficient force (in motion) to cause serious injury.

The Aspen proceeded to the buoy's location, guided by its sophisticated "Integrated Ship Control System," which brings together (and displays information from) the cutter's satellite navigation system, radar, and electronic nautical charts. This information is integrated with the maneuvering system, consisting of variable pitch props, rudders, and two thrusters (bow and stern), allowing for very precise navigation and maneuvering.

The NDBC technicians had reason to believe this particular buoy may have had some saltwater intrusion, which can result in a dangerous build up of hydrogen gas (due to interaction of the saltwater with the batteries). Hydrogen is a highly explosive gas, and bringing the buoy on board could have exposed the crew and technicians to an unacceptable risk. For just such an occasion, the SAIC technicians were equipped with sensitive "sniffing" gear. The Aspen's crew lowered a small boat and took the two technicians out to the buoy to check for the possible presence of hydrogen. In this case, no dangerous emissions were detected and the buoy was deemed "safe" for taking aboard.

The Aspen then slowly and carefully maneuvered toward the buoy, bringing it closely alongside. The Aspen (and other similar Coast Guard cutters) uses a very precise maneuvering

Servicing NOAA Buoys

system for just such occasions. The ship's bow and stern thrusters can be manually driven or, using an integrated computer, provide specific maneuvering instructions to be immediately carried out. The ship can be moved in very small increments in all directions until the buoy is in an optimum position for working.

In preparation for this day's operation, the deck crew conducted a briefing to ensure all parties involved intimately knew their specific roles and responsibilities. For this operation, there were eight crew members working on deck, led by a senior petty officer. A safety observer was also present, watching every step from

3-meter discus buoys in a diagonal position along the deck with the Aspen's crane poised overhead.
above. On the bridge, Lieutenant Commander Adam Shaw, Aspen's Commanding Officer, had overall control of the entire operation, with safety being his primary
consideration. The operation would not commence until the Captain decided conditions were safe and the crew was completely ready.

Once the buoy was safely alongside, the deck crew attached a line to prepare it for lifting (not always easy, given less favorable weather conditions). Once the line was in place, the crane hook was securely attached to one of the lifting points on the base of the buoy. Using the Aspen's 20-ton hydraulic crane (with a 60-foot boom), lifting began almost immediately, but proceeded slowly and carefully. Rather than hoisting the buoy high up, then rotating the crane to lower it on deck, the buoy was slowly dragged aboard, using the crane in combination with a horizontal cable ("crossdeck") pulled by a separate winch. This procedure minimizes the risk of the buoy swinging and potentially injuring crew members. After the buoy was safely secured on deck, the anchor chain (still attached to a 6,000 pound sinker on the bottom, 259 feet below) was slowly pulled on deck. To prevent the chain from being pulled back into the water and to protect the deck crew, it was secured on deck with a special "chain stop." The crew then proceeded to scrape the buoy's hull of its abundant accumulation of sea life, which had made this particular buoy its home for the past year. Finally, the chain was disconnected from the bottom, inspected for abrasions and other weak points, and subsequently reconnected to the "new" buoy \# 46012.

The next phase of the operation involved attaching the crane's hook to the new buoy, releasing the chains securing it on deck, lifting it, and

Operation in action: replacing 3-meter buoy off the coast of California.
finally putting it in the water. This phase of the operation is easier said than done. With two other buoys on deck to the side and (now) another buoy in the center of the deck (i.e. the "old" \# 46012, just out of the water), this would prove to be a delicate maneuver. The buoy would have to be carefully lifted and rotated such that it's sensitive environmental instrumentation (on the top of the buoy) would not impact any obstacles, either on the ship or the other buoys on deck, thus risking damage. Damage to its instrumentation would have meant certain delay, and (if serious), could even have resulted in a long postponement of this particular buoy's replacement.

After careful planning and discussion by the deck crew, the new buoy was slowly lifted and, using the "crossdeck" cable to control its horizontal movement, was then rotated over the side and slowly
lowered into the water. Then, with the crew safely out of the way, the buoy's anchor chain was released from the chain stop and the "new" NOAA data buoy \# 46012 was free from the Aspen and ready to begin its job of gathering and transmitting vital data. For about the next three hours, NDBC monitored the buoy's environmental and oceanographic data, transmitted via satellite. The data was compared to data on-site ("ground truth") and, with no significant discrepancies, the operation was deemed a success. The Aspen then proceeded on to its next operation.

Over the next two days, the Aspen's crew repeated this operation, replacing NOAA data buoys off Monterey Bay (\# 46042) and Cape San Martin (\# 46028). While similar in most respects, there were a few significant differences. As mentioned previously, no two buoy servicing operations are alike. Weather

conditions are never the same and, at times, the configuration of the buoy requires adjustments to handling procedures. Additionally, the buoy's location in itself is significant.

The next day, the Aspen proceeded to buoy \# 46042, west of Monterey Bay. While again sunny with excellent visibility, the winds were slightly stronger and the seas slightly higher. Additionally, this buoy was located in much deeper water - nearly 7,000 feet. As part of it's design, each buoy is given a certain amount of "room to roam." Due to constantly changing winds and currents, buoys must have a certain amount of slack in the mooring chain so that it is free to move about (within limits). The precise term is "watch circle radius." In the case of the first buoy worked on this trip (\# 46012 off Half Moon Bay), the water depth was "only" 259 feet, with a corresponding watch circle radius of about 130 yards, meaning it had freedom of movement within a circle of that size. In the case of the much deeper water at buoy \# 46042, however, the watch circle radius increased to more than 1,700

3-meter buoy on station. The vertical bars around the deck of the buoy are called "seal cages" and are placed on buoys to prevent seals from climbing aboard, thus avoiding possible harm to the seal while preventing damage to the buoy.

Servicing NOAA Buoys

yards. When strong currents are present, the ship may have to "chase" the buoy, making its capture more difficult.

Buoy \# 46042 also had a different mooring chain configuration, including an attached device known as a "flounder plate." NDBC was evaluating the wave data on buoys with and without this device attached.

Buoy \# 46028 off Cape San Martin, replaced on the third day of the voyage, also had a directional capability, but had no "flounder plate" attached to it.

Maintaining coastal aids to navigation (and NOAA data buoys) along the California coast is the Aspen's primary mission, but it is certainly not its only mission. The Aspen also performs vital search and rescue, law enforcement, and pollution control missions as well. I genuinely appreciate having had the opportunity to experience life aboard the Aspen for a few days, and to watch her very professional crew in action.

U.S. Coast Guard Cutter Aspen

Wind/Wave Damage

Wind/Wave Damage Along the SW Cape Coast May 24-25, 2002

Ian T. Hunter
Deputy Director: Marine Meteorological Services
South African Weather Service

The attached time series of air pressure comes from a drifting weather buoy which was deployed by the SA Agulhas on 20 September 2001 during her annual relief voyage to Gough Island. Note that the air pressure at the present location of the buoy $(41 \mathrm{~S}$ 08 E) plummeted almost 50 hPa from Thursday afternoon to early Friday morning - a very good example of explosive cyclogenesis.
The cold front associated with this low pressure system passed over Cape Town late on Friday afternoon, with northwesterly winds at the SAWS automatic weather station at Cape Point, gusting up to $120 \mathrm{~km} / \mathrm{hr}$ ahead of the front. Places such as Betty's Bay and Hermanus, with their mountainous terrain upwind, experienced very turbulent conditions, and there was much damage to homes in the region.

It was, however, the waves generated by this storm that caused most of the damage to coastal structures around the SW Cape coast. The swell waves generated southwest of Cape Town the

previous day arrived in the early hours of Saturday morning and unfortunately, this coincided with a spring high tide. Three, Anchor Bay, Bakhoven, Hermanus, and several other coastal sites again suffered wave damage on the scale of such legendary storms as 17 May 1984 and 5 September 2001. At Bakhoven, the National Sea Rescue Institute, NSRI's rescue craft had to be airlifted off the beach to prevent it being destroyed by the heavy surf.
On the western Agulhas Bank south of Mossel Bay, average wave heights reached almost 11 m - not that far off the estimated 1-in-100 year wave height of approximately 12 m for this ocean region. The various numerical models available to SA Weather Service forecasters gave very good guidance of what to expect. In fact, the global wave models run by NOAA (US National Weather Service) and the UK Met Office were predicting the extreme waves 4 days ahead of the event!

Shipwreck: MAURICE DESGAGNES
Skip Gillham
Vineland, Ontario, Canada

The small freighter Maurice Dsegagnes had a diverse career, mixing deep sea, coastal, Arctic and Great Lakes trading.

This vessel was originally known as Vaasa Provider, and it had been built in 1963 at Terneuzen, Holland. The 296-ft long by 44-ft wide general cargo carrier was sold to A/B Rauanhelmo O/Y of Finland in 1966 and sailed as Lauri-Ragnar. The ship was renamed Finnrunner when acquired by R. Nordstrom \& Co. in 1971.

A year later it became the flagship of Desgagnes Navigation and moved to Canadian registry as Maurice
Desgagnes, where it replaced the illfated Voyageur D. that had been lost on the St. Lawrence in January 1972.

Maurice Desgagnes initially operated between Montreal and Sept Iles, PQ. Other trips included a voyage to Brazil in 1973, annual excursions in the summer supply run to the Canadian Arctic and occasional trading into the Great Lakes.

On February 26, 1974, the vessel made the news when it caught fire while in Montreal. The fire damaged the interior and resulted in minor burns to the Captain, his wife and infant daughter. Just over a year after that tragedy, the ship collided with the Skua at Sorel on April 14, 1975.

Maurice Desgagnes travelled to the Bahamas, Guatemala, and Egypt in 1978, brought steel from Europe in 1979 and had just visited Venezuela prior to heading north to load a cargo of oak railway ties.

Maurice Desgagnes

The ship loaded the last cargo at New Orleans, LA for Sept Iles when it was caught by a late winter storm in the Atlantic on March 11, 1980. While sailing about 75 miles ESE of Halifax in 50-60 mph winds, a monster wave struck the vessel, causing the cargo to shift drastically

Fortunately, the Canadian destroyer Huron was nearby and sent helicopters in response to the distress call. They evacuated all 21 sailors from the listing freighter on March 12, 1980.

Maurice Desgagnes sank in the Atlantic about 30 minutes after the last man left the pitching decks.

Freighter Maurice Desgagnes

MARINE WEATHER REVIEW - NORTH ATLANTIC AREA January through April 2002

By George P. Bancroft
Meteorologist
Marine Prediction Center

Introduction

The most active period was through mid-February, when a series of lowpressure systems developed off the U.S. East Coast and tracked northeast. Most of these, with few exceptions, passed between Greenland and Great Britain. The month of January was especially stormy, with many of the lows developing hurricane-force winds. MPC issued 55 high seas warnings for hurricane force winds during January, the most in any month in MPC's North Atlantic high seas area (north of 31 N and west of 35 W) since 1995 , when MPC began keeping a count of its high seas warnings. Only the North Pacific high seas area in January 1998 had more such warnings (60).

The weather pattern became more variable from the second week of February through April, with blocking high pressure becoming frequent over the central North Atlantic. This forced low-pressure systems to move north from the Canadian Maritimes toward Greenland and then turn east; with slow-moving cutoff lows sometimes forming over the southern high seas waters or off Portugal. The last of the events with hurricane-force winds was in late March.

Significant Events of the Period

Central Atlantic Storm of 2-4

January: Figure 1 depicts three low-
pressure centers south of Newfoundland which quickly merged into one center and deepened during the following 24 -hour period to form the $959-\mathrm{mb}$ central Atlantic storm in the second part of the figure. Even when taking the initial central pressure from the deepest of the three centers (997 mb), the system dropped an impressive 38 mb in the 24 -hour period covered by Figure 1, which was the period of most rapid deepening. By 1200 UTC January 3, MPC classified this system as a hurricane-force storm. The QuikScat image of Figure 2 confirms this, showing wind barbs as high as 70 kt south of the center. The valid time of the image is about one hour after the time of the second analysis in Figure 1. The highest wind reported by ships was 60 kt , with the P\&O Nedlloyd Sydney (PDHY) encountering a southwest wind of 60 kt and 12.2meter seas (40 feet) near 51 N 30 W at 1800 UTC January 3. The Canmar Honour (ZCBP5) reported a southwest wind of 45 kt and seas of 14.0 meters (46 feet), the highest seas reported in this storm. This system subsequently weakened near the eastern coast of Greenland late on January 4.

North Atlantic Storm of 4-6

January: This storm originated as a frontal wave of low pressure in the Gulf of Mexico on the first and moved off the U.S. East Coast on the third, developing multiple centers. Figure 3 depicts the primary center as
the 993 -mb storm near 34 N 71 W at 1200 UTC January 4, plus two secondary low-pressure centers to the northeast. The easternmost center deepened rapidly in the following 24 hours and became the main center, shown as the hurricane-force storm $(943 \mathrm{mb})$ near Greenland at 1200 UTC January 5. The drop in central pressure was an impressive 47 mb (1.39 inches) during this period, almost 2 mb per hour. The central pressure bottomed out at 942 mb (27.82 inches) as the center reached 62 N 39 W six hours later. This made the storm the second deepest of the January-to-April period, not only in the North Atlantic, but also in both oceans. The highest winds and seas reported by ship were on the backside of the primary storm center off the U.S. East Coast. The Sea-Land Performance (KRPD) reported a north wind of 60 kt and 8.8 -meter seas (29 feet) near 37 N 62 W at 0000 UTC January 5. The Lykes Liberator (WGXN) encountered a northwest wind of 55 kt and 13.7-meter seas (45 feet) near 34 N 71 W at 1800 UTC January 4. The redeveloped stronger system near Greenland was in an area of sparse ship data, but QuikScat data (Figure 4) revealed winds as high as 65 kt southeast of the center. The infrared satellite image (Figure 5) shows the storm near maximum intensity with a well-defined center near 60N 40W and associated frontal bands. The broadening of the frontal band well south of the center is the

Figure 1. MPC North Atlantic Surface Analysis charts valic 0600 UTC January 2 and 3, 2002.

Marine Weather Review

Figure 2. QuikScat scatterometer image of satellite-sensed winds valid approximately 0700 UTC January 3, 2002.
(Image courtesy of NOAA/NESIDIS Office of Research and Applications)

Figure 3. MPC North Atlantic Surface Analysis charts valid 1200 UTC January 4 and 5, 2002.

Marine Weather Review

Figure 4. QuikScat scatterometer image of satellite-sensed winds valid approximately 0700 UTC January 3, 2002.
(Image courtesy of NOAA/NESDIS/Office of Research and Applications)

Marine Weather Review

Figure 5. METEOSAT 7 infrared satellite image valid 1500 UTC January 5, 2002. Satellite senses temperature on a scale from warm (black) to cold (white) in this type of image. The valid time is only 3 hours later than that of the second surface analysis in Figure 3.

Marine Weather Review

Figure 6. MPC North Atlantic Surface Analysischarts (Part 2 - west) valid 0000 UTC January 13 and 14, 2002.
low on the trailing front, depicted near 39N 47 W in the second part of Figure 3, which subsequently moved rapidly northeast past Iceland by 1800 UTC January 6, while the main center weakened near the Greenland coast.

Gulf of Maine "Bomb" - 13-16

January: Originating near the Carolina coast at 0000 UTC January 13 , this system developed explosively as it passed east of New England on the afternoon of January 13 Figure 6 depicts the storm during its most rapid development over a 24 -hour period. The central pressure dropped 50 mb (1.48 inches) during this period, with 34 mb of that drop occurring in the last 12 hours. The storm reached
maximum intensity at 0000 UTC January 14 (954 mb or 28.17 inches), before beginning a slow weakening trend while continuing on a northeastward track across the Canadian Maritimes. The hurricaneforce winds in this storm were mainly south and southwest of the center and lasted only 12 to 18 hours, but were quite intense. The British Harrier (MZFK4) encountered southwest winds of 80 to 90 kt near 43 N 66 W in the six hour period ending at 0600 UTC January 14, and seas of 14.9 meters (49 feet) near 43 N 65 W at 1200 UTC January 14. By comparison, a QuikScat pass taken about 2230 UTC January 13 shows winds of 75 kt in the Gulf of Maine
(Figure 7). The Pharos (ELTX9) reported west winds of 55 kt and 16.2 -meter seas (53 feet) near 41 N 56 W at 1800 UTC January 14 , the maximum seas reported in this storm. Hibernia Platform 44145 (46.7N 48.7W) clocked southwest winds of up to 77 kt at 2100 UTC January 14. Canadian buoy 44142 (42.5N 64.0W) reported southwest winds of 49 kt , with gusts to 62 kt , at 0300 UTC January 14 , and seas 12.5 meters (41 feet) at 0700 UTC that same day, the highest winds and seas reported from buoys. Among coastal C-MAN stations, Matinicus Rock (MDRM1, 43.8 N 68.7 W) reported the highest winds, with a northwest wind of 55 kt and gusts to 65 kt at 2300 UTC

Figure 7. QuikScat scatterometer image of satellite-sensed winds valid approximately 2230 UTC
January 13, 2002.
(Image courtesy of NOAA/NESDIS/Office of Research and Applications)

Figure 8. GOES-8 infrared satellite image valid 0015 UTC January 14, 2002. The valid time is approximately that of the second surface analysis of Figure 6.

January 13. The infrared satellite image of Figure 8 shows the storm near maximum intensity with a welldefined center near Cape Sable and strong convection along a portion of the cold front near 59 W . The storm subsequently stalled east of Greenland on January 16, where it weakened to a gale by the next day.

North Atlantic Storm of 16-20

January: After passing northeast through MPC's offshore waters on January 15 , this system absorbed two other lows to the north, pulled arctic
air into its circulation and accomplished much of its intensification in the 24 -hour period ending at 0600 UTC January 17. At 0600 UTC January 17, the storm center was at 50 N 46 W with a central pressure of 972 mb . The Talisman (LAOW5) south of the center near 43N 46W reported a southwest wind of 70 kt . The storm's central pressure bottomed out at 960 mb near 57 N 29W twenty-four hours later, similar in intensity to the January 2-4 storm. The Alligator Reliance (ZCBN5) encountered southwest winds of 70 kt
near 48 N 31 W at 0000 UTC January 18. The Irving Primrose (8POI) encountered west winds of 65 kt near 54 N 27 W at 1200 UTC January 18. Buoy 62108 (53.4 N 19.4 W) reported 12.2 -meter seas (40 feet) six hours later. At 0000 UTC January 19, the ship ZCBP6 reported west winds of 50 kt and seas of 11.0 meters (36 feet), the highest seas reported by ship in this event.

Eastern Atlantic Storm of 19-22
January: While the aforementioned storm was elongating and weakening

Figure 9. MPC North Atlantic Surface Analysis charts valid 1200 UTC January 19 and 0000 YTC
January 21, 2002.

east of Greenland (Figure 9), a storm developed in the eastern North Atlantic with an intensity similar to that of the 2-4 and 16-20 January storms, but tracked farther east. The first part of Figure 9 shows the system passing south of Newfoundland. Rapid intensification followed as the system absorbed the low to the northwest near Cape Race with its trailing arctic front, and the central pressure dropped 35 mb in the 24 -hour period ending 0600 UTC January 20. The second part of Figure 9 shows the storm at maximum intensity (959 mb) west of Ireland. At 1200 UTC January 20, the
Leverkusen Express (DEHY) near 47N 31W, and the Marchen Maersk (OWDQ2) near 47N 25W, encountered winds from the northwest and southwest at 60 kt , respectively. The Lykes Liberator (WGXN) to the west near 45N 41W reported northwest winds of 45 kt and 11.3meter seas (37 feet) at this time. QuikScat data (not shown) available around this storm near maximum intensity revealed hurricane-force winds of 65 kt south of the center in an area of no ship data. The storm subsequently weakened to a gale while passing just north of the British Isles on January 22.

North Atlantic Storm of 20-23

January: Again referring to Figure 9 , this storm followed immediately in the wake of the preceding event and was unlike most preceding storms in that it developed earlier and farther south after moving off the U.S. East Coast. The period covered by Figure 9 includes the period of most-rapid intensification, the 24 -hour period ending at 0000 UTC January 21 when the central pressure dropped 39 mb . The center developed a maximum
intensity of 961 mb in the central North Atlantic eighteen hours later. The ship SLCO (40N 58W) reported a west wind of 60 kt at 1800 UTC January 20. Six hours later, the ship ZQYJ6 encountered northwest winds of 60 kt near 39N 56W. At 0600 UTC January 21, the Nordmax (P3YS5) near 38 N 51 W experienced northwest winds of 50 kt and 12.8 -meter seas (42 feet). The Canadian buoy 44140 (43.7N 51.7W) reported north winds reaching 49 kt , with gusts to 66 kt , at 0200 UTC January 21 and maximum seas of 7.5 meters (25 feet) two hours later. At 1800 UTC January 22, with the storm center slowly weakening and approaching Great Britain, the Lykes Liberator (WGXN) near 47N 19 W reported south winds of 50 kt and 13.7-meter seas (45 feet), the highest seas reported in this event. The weakening system subsequently passed east across Great Britain and the North Sea on January 23 and 24.

Northwest Atlantic Storm of 22-30
January: This storm began as multiple low-pressure centers near the northeast coast of the U.S. at 1800 UTC January 2, which moved northeast and merged into one while rapidly intensifying (by 36 mb) in the first 24 hours. At 0600 UTC January 23 , with the center east of Newfoundland near 47N 49W (972 mb), MPC classified it as a hurricaneforce storm. At 0000 UTC January 23, the Zim Korea (4XGU) near 39N 56 W reported west winds of 60 kt and 8.5 -meter seas (28 feet). Twelve hours later, the vessel ELVF6 (43N 47W) encountered west winds of 55 kt and 13.4 -meter seas (43N 47W). The storm center then moved north while slowly deepening and stalled on January 24, south of Greenland near 55 N , blocked by a strong high-

Marine Weather Review

pressure ridge over Greenland. Figure 10 depicts the stalled center south of Greenland at 0000 UTC January 26 near maximum intensity. The QuikScat image in Figure 11, valid more than 15 hours prior to the valid time of the first part of Figure 10, shows hurricane-force winds up to 80 kt north of the center, off the southern tip of Greenland. The system subsequently looped back to the northwest and weakened to a gale west of Greenland by January 31. Meanwhile, other significant developments were occurring to the south and east of this persistent system, as indicated below.

Eastern Atlantic Storm of 26-28

January: Low pressure moved off the New England coast at 0000 UTC January 25 and elongated eastward while slowly intensifying. The system formed a new center to the east, which appears in the first part of Figure 10 as the $989-\mathrm{mb}$ center at 42 N 42 W . This took over as the main center while moving northeast and intensifying, leading to the hurricaneforce storm (954 mb) in the second part of Figure 10. With the long fetch of gale to storm-force southwest winds apparent in the eastern Atlantic, seas became quite high. The Atlantic Concert (SKOZ) reported a southwest wind of 70 kt and 17.1meter seas (56 feet) near 48 N 21 W at 1200 UTC January 27, while the SeaLand Motivator (WAAH) to the southwest encountered southwest winds of 45 kt and 13.7 -meter seas (45 feet) near 45 N 29 W . Later, at 0600 UTC January 28 with the system near maximum intensity, the Atlantic Companion (SKPE) reported southwest winds of 65 kt near 55N 12W, while the Arina Arctica (OVYA2) north of the center

Marine Weather Review

Figure 10. MPC North Atlantic Surface analysis charts (Part 1 - east) valid 0000 UTC January 26 and 28, 2002.

Figure 11. QuikScat scatterometer image of satellite-sensed winds valid approximately 0830 UTC January 25, 2002.
(Image courtesy of NOAA/NESDIS/Office of research and Applications)

Marine Weather Review

Figure 12. MPC North Atlantic Surface Analysis charts: A full-ocean chart valid 1800 UTC January 30 plus two Part 1 analysis charts valid 1800 UTC January 31 and February 1, 2002.

Marine Weather Review

Figure 13. MPC 500-Mb analysis of North Atlantic valid at 1200 UTC January 31, 2002. The chart is computergenerated with short-wave troughs (dashed lines) added by the analyst.
experienced northeast winds of 65 kt near 62 N 13 W . The storm then weakened while passing north of Great Britain on the 28th before moving inland over Norway by January 29.

Eastern Atlantic Storm of January

30 to February 1: The next
developing storm system moved east of the island of Newfoundland at 1800 UTC January 29 and then moved northeast while rapidly intensifying. The system is shown in the first part of Figure 12 twenty-four hours later as the developing hurricane-force storm near 52N 30W. Twelve hours later, the center was near 55 N 23 W with a central pressure down to 964 mb , a drop of 31 mb in

24 hours. The Contship Endeavour (ZCBE7) encountered west winds of 60 kt and 6.1-meter seas (20 feet) near 50 N 24 W at 0600 UTC January 31, after the center passed to the north. At the same time, the ship PFAQ nearby at 51 N 24 W reported west winds of 55 kt and seas of 9.1 meters (30 feet). Another ship, ELZT6 near 47N 31W, experienced west winds of 40 kt and 10.7-meter seas (35 feet), the highest seas reported in this storm. The storm center appears in the second part of Figure 12 just south of Iceland, about to loop back to the southwest and becoming absorbed by a much larger storm system described next.

Eastern Atlantic "Bomb," January

 30 to February 2: Following closebehind the preceding system, the next major storm developed from the 1010-mb low south of Newfoundland shown in the first part of Figure 12. This low underwent explosive intensification with much of the deepening occurring in the first 24 hours, in which the central pressure fell 62 mb (1.83 inches) in 24 hours. Thirty-two millibars (0.94 inch) or more than half of that drop in pressure occurred in the final six hours, leading to the 948 -mb hurricane-force storm shown in the second surface analysis of Figure 12. Figure 13 is a $500-\mathrm{mb}$ analysis valid at a time when the surface low was deepening most rapidly. It shows strong support aloft in the form of an intense short-wave

Figure 14. QuikScat scatterometer image of satellite-sensed winds valid approximately 2000 UTC January 31, 2002.
(Image courtesy of NOAA/NESDIS/Office of Research and Application)
trough and jet stream of up to 135 kt coming off the Canadian coast. In the second analysis of Figure 12 the ship Contship Endeavour (ZCBE7), reported a $90-\mathrm{kt}$ west wind just south of the $948-\mathrm{mb}$ center. This report looks reasonable when compared to the QuikScat image of Figure 14 valid about two hours later, showing two $80-\mathrm{kt}$ wind barbs just south of the center. The storm center underwent
further intensification in the following 24 hours, leading to the $933-\mathrm{mb}$ center approaching Iceland (third part of Figure 12). The center passed over a buoy (62520 at 59.61 N 16.02 W) which reported pressures as low as 925 mb at 1600 UTC February 1. The infrared satellite image of Figure 15 is valid near the time of maximum intensity, revealing a well-defined main center northwest of Great

Britain with cold cloud tops indicating considerable vertical development. The clouds appear more convective in the cold air behind the front, where there is a secondary circulation near 50 N 29 W corresponding to the new hurricane-force storm center near 50N 26W in Figure 12. The highest winds and seas occurred with this new center after the primary center pulled to the north. This is not surprising, since

Figure 15. METEOSAT-7 infrared satellite image valid 1500 UTC February 1, 2002. The valid time is only 3 hours prior to that of the third surface analysis in Figure 12.
cold air over the ocean surface produces instability, mixing stronger winds from aloft down to the surface. The cold air also has more "bite" on the sea surface, enhancing waves. The ship ELZU3 near 46N 47W reported a northwest wind of 70 kt at 0600 UTC February 1, while another vessel (ELZT6) encountered west winds of 65 kt and 19.8-meter seas (65 feet) near 47N 39W. At the same time, a buoy to the northeast (62108 near 53.3 N 19.3 W) reported southwest winds of 55 kt and 13.4-meter seas. Another ship, the Atlantic Compass
(SKUN) near 49N 29W, experienced southwest winds of 50 kt and $18.0-$ meter seas (59 feet) six hours later. The storm subsequently passed east of Iceland late on February 2 and began to weaken.

In summary, this was the most significant event of the period, producing maximum reported winds equal to those reported in the January 13-16 storm, plus the highest seas, lowest central pressure and greatest rate of intensification.

North Atlantic Storm of 4-8
February: This system formed off the southeast U.S. coast at 0000 UTC February 4 and tracked northeast to near Sable Island 24 hours later, absorbing another low and arctic front that were over the northeastern U.S. After initially deepening 31 mb in the first 24 hours, the center underwent further intensification after passing northeast of the island of Newfoundland and developed hurricane-force winds (Figure 16). The central pressure bottomed out at 947 mb at 0000 UTC February 7

when the center was near 54 N 40 W . The Fidelio (WQVY) near 50N 43W reported a southwest wind of 65 kt at 1800 UTC February 6 (Figure 16).
Also at this time, the ship LAIP5 near 46N 47W encountered a west wind of 60 kt and 11.3-meter seas (37 feet), while the Canmar Honour (ZCBP5) near 46N 38W experienced southwest winds of 40 kt and 14.0 -meter seas (46 feet). The ship PFAQ near 43N 44 W reported a southwest wind of 55 kt and 15.2 -meter seas (50 feet) at 1200 UTC February 6. The storm system then weakened slowly while tracking east, before dissipating near the British Isles on February 9.

Northwest Atlantic Storm of 14-20

March: Unlike other storms preceding it, this hurricane-force storm developed from a primary lowpressure center which moved through southeastern Canada before exiting the southern Labrador coast and absorbing weaker lows that were south of the Canadian Maritimes (Figure 17). The central pressure dropped 33 mb in the 24 -hour period ending at 1200 UTC March 15 . The second part of Figure 17 shows the system at maximum intensity (956 $\mathrm{mb})$. The Newfoundland Otter
(CFD3659) reported a northwest wind of 80 kt near 53 N 53 W at 1800 UTC March 15. The ship PDHW near 46N 44W reported 11.0-meter seas (36 feet) along with west winds of 35 kt at 1200 UTC March 16. Blocked by high pressure over Greenland, the storm then moved southeast and stalled for several days near 52 N 35 W , weakening to a gale on March 20.

North Atlantic Storm of 17-20

April: This developing storm tracked east-northeast from Nova Scotia at 0000 UTC April 16 and intensified rapidly after passing east of Newfoundland late on April 16. The central pressure fell 26 mb in the 24hour period ending at 0600 UTC April 18 , when the center was near 52 N 39W at 963 mb . The center stalled in the vicinity and became as deep as 958 mb thirty-six hours later before beginning a weakening trend. This storm was almost as intense as the March storm in terms of central pressure. The strongest winds and highest seas were southwest and south of the center. The ship SDBQ reported the highest wind, a southwest wind of 60 kt near 45 N 43 W at 0000 UTC April 19. The same ship

Mariners Weather Log

reported a west wind of 50 kt along with 13.4 -meter seas (44 feet) near 45 N 44 W twelve hours later. At 0000 UTC April 20, the vessel LART5 near 42N 40W encountered west winds of 55 kt and seas of 15.5 meters (51 feet), the highest seas reported in this storm. The system accelerated toward the northeast late on the April 20, passing northeast of Iceland on April 22.

References

Sienkiewicz, J. and Chesneau, L., Mariner's Guide to the 500-Mb Chart (Mariners Weather Log, Winter 1995).

Bancroft, G., High Seas Text Bulletins Issued by MPC (Mariners Weather Log, Vol. 40, No. 2, Summer 1996).

Bancroft, G., Marine Weather Review-North Atlantic Area, September through December 1999 (Mariners Weather Log, April 2000).

Figure 16. MPC North Atlantic Surface Analysis charts (Part 2) valid 0600 UTC February 5 and 1800 UTC
February 6, 2002.

Figure 17. MPC North Atlantic Surface Analysis charts (Part 2) valid 1800 UTC March 14 and 15, 2002.

Marine Weather Review

MARINE WEATHER REVIEW - NORTH PACIFIC AREA January through April 2002

By George P. Bancroft

Meteorologist
Marine Prediction Center

Introduction

The weather pattern began with lowpressure systems tracking eastnortheast to the Gulf of Alaska or eastern Aleutians; but, as the season progressed, blocking high pressure became more frequent over Alaska and the eastern North Pacific, especially after mid-February. This caused low-pressure systems over the North Pacific to stall or move erratically, or move north into the Bering Sea. When using numbers of high seas warnings as a means of comparison, it would appear that the weather over the North Pacific was less active than in the Atlantic. MPC issued a January-February combined total of 22 warnings for hurricaneforce winds over the North Pacific high seas area, much less than the 55 issued for the North Atlantic in January alone. Also, there were fewer high seas storm warnings issued for the North Pacific than for the North Atlantic in each of the four months.

Tropical Activity

The January-to-April period is the least active (for tropical cyclones) of the four-month periods covered in this publication. Two tropical cyclones made brief appearances near the southwest corner of MPC's oceanic surface analysis chart prepared for HF radiofacsimile transmission. Neither
redeveloped into significant extratrpical storms, as described below.

Tropical Storm Mitag: Formerly a typhoon well southwest of Japan, Mitag weakened to a tropical storm upon entering MPC's oceanic surface analysis area near 19N 137E at 0000 UTC March 8, with maximum sustained winds of 50 kt and gusts to 65 kt . Blocked by building high pressure to the north, Mitag became extratropical and drifted south of the area at 1200 UTC March 8.

Tropical Depression 4W: This system formed near 17 N 160 E at 1800 UTC April 6 with maximum sustained winds of 30 kt and gusts to 40 kt , but it merged with a nearby front and became extratropical six hours later.

Other Significant Events

Complex North Pacific Storm of 3-6 January: A complex or multicentered area of low pressure moved off the coast of Japan on January 1. The storm center near 45 N 162E became the primary center (Figure 1) and drifted east, while the old primary center near Sakhalin Island weakened. A secondary storm center emerged off the coast of Japan early on January 2 in the cold air behind the primary system and is depicted in Figure 1 as the $978-\mathrm{mb}$
center at 38 N 156 E . Passing south of the primary storm center over warm water, this secondary center developed hurricane-force winds, as indicated in the QuikScat imagery of Figure 2, which has a valid time only one and one-half hours later than that of the first surface analysis in Figure 1. There is a $70-\mathrm{kt}$ wind barb near 36 N 156 E associated with the surge of cold air behind the secondary storm center. The southwest winds of up to 50 kt off to the east near 172 E in Figure 2 are associated with the primary storm system to the east and northeast. Thirty-six hours later, the secondary center deepened to 952 mb and became the main center, while the old center lagged behind and weakened (second part of Figure 1). Twelve hours later, the storm system redeveloped to the east as a new center formed on the front and moved toward the Gulf of Alaska. It appears in the first part of Figure 3 as the 950mb center at 48 N 150 W . This was the lowest central pressure reached by any of the centers in this complex system and the second lowest pressure in the North Pacific during the January-to-April period. By 5 January, the storm circulation covered much of the North Pacific. The system subsequently lifted slowly to the north and slowly weakened, and moved inland over south central Alaska on January 7. The Stellar Image (3FDO6), traveling eastbound

Mariners Weather Log

Figure 1. MPC North Pacific Surface Analysis charts valid 0600 UTC January 3 and 1800 UTC January 4, 2002.

Marine Weather Review

Figure 2. QuikScat scatterometer image of satellite-sensed winds around the south side of the complex storm system shown in Figure 1. The valid time is approximately 0730 UTC January 3, 2002.
(Image courtesy of NOAA/NESDIS/Office of Research and Application)

Figure 3. MPC North Pacific Surface Analysis charts valid 0000 UTC January 6 and 8, 2002.

Marine Weather Review

while the storm system passed to the north, transmitted the following reports:

Location	Date/Time (UTC)	Wind (Direction. Speed in Kn)	Combined Seas (meters/fert)
37N 162E	03/0600	SW 45	11.9/39
37N 164E	03/1200	SW 50	10.4/34
37 N 166 E	03/1800	NW 50	13.7/45
37N 168E	04/0000	W 45	13.4/44
37N 171E	04/1200	W 35	10.7/35
38N 175E	05/0000	W 40	10.7/35
38N 176E	0510600	W 50	11.6/38
38N 178E	05/1200	W 55	11.9/39
38 N 178 W	06/0000	NW 40	12.5/41

North Pacific Storm of 5-9 January: While the preceding storm system was nearing maximum strength, the

Among other reports, the Manoa (KDBG) encountered south winds of 60 kt near 41 N 142 W at 0600 UTC January 5, the highest wind reported by ships in this event. The Rubin Stella (3FAP5) near 40N 171W reported west winds of 55 kt and 12.8 -meter seas (42 feet) at 0000 UTC January 5.
the second analysis depicting the storm at maximum intensity ($950-\mathrm{mb}$ central pressure) with hurricane-force winds. The central pressure fell 24 mb in the 24 -hour period ending at 1200 UTC January 7, the most rapid rate of deepening during this event. This storm therefore could be considered a meteorological "bomb" during a portion of this period. The ship

VRWE7 reported a west wind of 50 kt and 9.1-meter seas (30 feet) near 39N 173E at 0600 UTC January 7. Twelve hours later with the storm at maximum intensity, the vessel MHCQ7 near 43N 173W reported a northwest wind of 65 kt (Figure 3), the highest wind reported by ship in this storm. At 0600 UTC January 8, the Stellar Image (3FDO6) encountered southwest winds of 55 kt and 13.1-meter seas (43 feet), the highest seas reported in this event. The system subsequently turned north toward western mainland Alaska and elongated, weakening to a gale by 0000 UTC January 10 and moving inland shortly thereafter.

Western Pacific Storm of 26-31

January: This system rapidly intensified to a storm while passing off the central coast of Japan late on

Figure 4. MPC North Pacific Surface Analysis charts (Part 1- east) valid 0600 UTC February 7 and 8, 2002.

January 26, developing a central pressure of 972 mb by 0000 UTC January 28 near 41N 148E. Although this system later was as deep as 964 mb as it moved into the Bering Sea by the 31st, the storm generated the highest winds and seas while over the North Pacific. At 0600 UTC January 27, the President Grant (WCY2098) reported a southeast wind of 60 kt near 37N 148E. Twelve hours later, the ship ELXU2 encountered southwest winds of 60 kt near 34 N 148E. These were the highest reported winds in this storm. At 1200 UTC January 29, the vessel ELYD5
encountered southwest winds of 50 kt and seas of 12.2 meters (42 feet) near 44 N 161 E , and six hours later the same winds and seas up to 15.2 meters (50 feet), the highest seas reported in this storm. The system later weakened to a gale and turned east after reaching the central Bering Sea late on the January 31.

Eastern Pacific "Bomb," 7-10 February: Low pressure passed south of Japan early on February 3 and tracked about due east with little development until the center crossed 170W on the 7th. Rapid intensification occurred as the center

Marine Weather Review

turned toward the northeast (Figure 4). The central pressure fell 32 mb in the 24 -hour period ending at 0600 UTC February, with 22 mb of that fall occurring in a six hour period ending at 0000 UTC February 8 . The $500-\mathrm{mb}$ analysis of Figure 5 corresponds with this period of most rapid intensification. This development is associated with a short-wave trough in the southern branch of the jet stream at 500 mb . The weaker low in the western Gulf of Alaska is associated with its separate short wave and northern branch of the jet stream. Both systems are well defined in the

Figure 5. MPC 500-Mb Analysis of North Pacific valid at 0000 UTC February 8, 2002. The chart is computer-generated with short-wave troughs (dashed lines) added by the analyst.

infrared satellite image of Figure 7 and include an occluded southern storm, unusually intense for that latitude. The northern branch shortwave trough came into play later on, causing further intensification of the southern storm as it was pulled north
into the Gulf of Alaska on 9 February. The center developed a central pressure of 960 mb near 55 N 143 W at 0000 UTC February 10 before weakening and moving inland later on that day.

The storm developed hurricane-force

Marine Weather Review

winds by 0600 UTC February 8 as revealed by the QuikScat winds shown in Figure 6. The Manoa (KDBG) reported a northeast wind of 65 kt and 17.1-meter seas (56 feet) near 39 N 154 W at 0300 UTC February 8, followed by a report of

Figure 6. QuikScat scatterometer image of satellite-sensed winds around the storm shown in Figure 4. The valid time of the pass is approximately $\mathbf{0 5 0 0}$ UTC February 8, 2002, or close to that of the second surface analysis in Figure 4.
(Image courtesy of NOAA/NESDIS/Office of Research and Applications)

Figure 7. GOES-10 infrared satellite image valid at 0700 UTC February 8, 2002. Satellite senses temperature, which is displayed on a scale from warm (black) to cold (white) in this type of imagery.
seas 18.9 meters (62 feet) three hours later. The same vessel then observed a south wind of 65 kt with 16.5 -meter seas (54 feet) near 37 N 149 W at 1800 UTC February 8. At 1200 UTC February 9, the John P. Tully (CG2958) encountered southeast winds of 65 kt near 49N 135W, while the Daishin Maru (3FPS6) to the north near 51N 134W reported
southeast winds of 50 kt and 14.0meter seas (46 feet). Later, at 0000 UTC February 10, the Daishin Maru experienced south winds of 50 kt and 15.8 -meter seas (52 feet).

In summary, this was the most significant event in the North Pacific, featuring hurricane-force winds and the highest seas observed in the

January-to-April period.

North Pacific Storm of 8-12 March:

This system followed an eastnortheast track across the Pacific, leaving the coast of northern Japan at 0000 UTC March 7 and later making final landfall as a weakening gale at 0600 UTC March 13. The first part of Figure 8 depicts this storm at

maximum intensity (962 mb) near 48N 156W at 1800 UTC March 10, and the second and third parts show this system weakening as it approaches the coast of British Columbia. The Maersk Wind (S6TY) reported a north wind of 65 kt twelve hours later near 53N 153W. At 0000 UTC March 12, the Oriental Bay (MKYJ8) experienced west winds of 50 kt and 15.5 -meter seas (51 feet) near 44 N 144 W , the highest seas observed in this storm.

Northwest Pacific and Bering Sea

 Storm of 11-13 March: The second and third parts of Figure 8 show the rapid development of this system to maximum intensity over a 24 -hour period, with the central pressure dropping 40 mb in this period. This was the most rapid pressure fall over a 24-hour period in the North Pacific in the four-month period. The central pressure of 948 mb reached at 1800 UTC March 12 was the lowest in the North Pacific during this four-month period. The intense center moved through an area of sparse ship reports. The strongest wind reported was from the Maersk Wind (S6TY), with asouth wind of 50 kt near 54 N 176 W at 0600 UTC March 13. The system was weakening rapidly and heading northwest at that time.

Western Pacific Storm of 4-6 April:

Figure 9 shows the development of this storm east of Japan over a 24hour period to maximum intensity, 980 mb , at 0600 UTC April 5. Slow weakening followed as the center drifted east, blocked by the highpressure ridge to the east and north. The Toba (LHOE3) near 36N 158E reported a southeast wind of 60 kt at 0600 UTC April 5, while the CSX Reliance (WFLH) near 33N 143E encountered north winds of 50 kt and 11.6-meter seas (38 feet), the highest seas observed in this storm. The CSX Reliance also reported a northwest wind of 60 kt and 9.8-meter seas (32 feet) near 33 N 145 E at 1200 UTC April 5. The QuikScat image of Figure 10 shows winds of 50 to 60 kt on the backside of the storm, similar to what ships were reporting. The system subsequently weakened to a gale as it reached 160E early on April 6.

References

Sienkiewicz, J. and Chesneau, L., Mariner's Guide to the 500-Mb Chart (Mariners Weather Log, Winter 1995).

Bancroft, G., High Seas Text Bulletins
Issued by MPC (Mariners
Weather Log, Vol. 40, No. 2, Summer 1996).

Bancroft, G., Marine Weather Review-North Atlantic Area, September through December 1999 (Mariners Weather Log, April 2000).

Marine Weather Review

Figure 8. MPC North Pacific Surface analysis charts valid 1800 UTC March 10,11 , and 12, 2002.

Figure 9. MPC North Pacific Surface Analysis charts (Part 2 - west) valid 0600 UTC April 4 and 5, 2002.

Figure 10. QuikScat
scatterometer image of satellitesensed winds around the back side of the storm shown in
Figure 9. The valid time of the pass is approximately 0900 UTC April 5, 2002, or three hours later than the valid time of the second analysis in Figure 9.
(Image courtesy of NOAA/NESDIS/Office of Research and Applications)

Marine Weather Review

MARINE WEATHER REVIEW - NORTH ATLANTIC AREA May through August 2002

By George P. Bancroft
Meteorologist
Marine Prediction Center

Introduction

With the progression of the season into summer the main track of lowpressure systems shifted north, from the Canadian Maritime Provinces northeast toward Iceland with several turning north into the Davis Strait. Although cyclonic activity is normally in decline with summer approaching, the period from the middle of May through the middle of June was especially active, with several lows developing storm force winds to 60 kt
to the west of Great Britain. Also, June 1 marks the start of the Atlantic hurricane season. Two named tropical cyclones affected MPC's waters north of 31 N , including the first of the season in mid-July and the third named storm in early August.

Tropical Activity

Tropical Storm Arthur: Arthur, the first tropical cyclone of the 2002 Atlantic hurricane season, originated as a weak low in the Gulf of Mexico
on July 9, then emerged off the South Carolina coast early on July 14 and became Tropical Depression 1 at 1800 UTC July 14 with maximum sustained winds of 30 kt with gusts to 40 kt . The system tracked east just south of a stationary front and intensified to a tropical storm eighteen hours later. Figure 1 shows Arthur with a maximum intensity of 50 kt with gusts to 60 kt about to merge with the front to the northwest and becoming an extratropical storm. The ship LAFQ5 near 36N 64W

Figure 1. MPC North Atlantic Surface Analysis charts (Part 2 - west) showing development of Tropical Storm Arthur. Valid times are 0600 UTC July 15 and 1800 UTC July 16, 2002.

encountered south winds of 45 kt and 5.5-meter seas (18 feet) at 0000 UTC July 16. Later, at 1800 UTC July 16, the Choyang Zenith (DACP) experienced southwest winds of 35 kt and 8.5-meter seas (28 feet) near 40 N 53 W , following passage of Arthur's center. The Canadian buoy 44141 (42.1N 56.2W) reported a northeast wind at 39 kt with gusts to $52 \mathrm{kt}, 3.5-$ meter seas (11 feet) and a pressure of 997.5 mb at 1500 UTC July 16. Figure 2 is a GOES8 infrared satellite image of Arthur near maximum intensity, revealing a central dense
core of cloudcover around the center, a characteristic of tropical cyclones. The remains of Arthur then moved north into the Davis Strait as a galeforce low early on July 19.

Tropical Storm Cristobal: The third tropical cyclone of the season began as a weak non-frontal low near the South Carolina coast early on August 4 which drifted southeast, becoming Tropical Depression 3 near 32N 77W at 2100 UTC August 5. It was named Tropical Storm Cristobal by TPC at 0900 UTC August 7 just south of MPC's waters near 29.5 N 76.2 W with

Marine Weather Review

maximum sustained winds of 40 kt with gusts to 50 kt . The system was subsequently picked up by an approaching cold front and maintained the same intensity, reentering MPC's waters near 31.5 N 76.0 W at 2100 UTC August 8 before becoming extratropical. The Figaro (S6PI) reported a southwest wind of 35 kt near 38 N 57 W at 1200 UTC August 9 as the center passed to the west. Twenty-four hours later, the Ever Reward (3FYB3) reported 5meter seas (16 feet) near 45 N 45 W , along with south winds of 30 kt .

Figure 2. GOES-8 infrared satellite image valid 1145 UTC July 16, 2002. Satellite senses temperature on a scale from warm (black) to cold (white) in this type of image. The valid time is about 6 hours prior to that of the second part of Figure 1.

Marine Weather Review

The remnants of Cristobal then moved northeast past Iceland early on August 14 as a gale-force low.

Other Significant Events of the Period

Western North Atlantic Storm of 4-
6 May: Figure 3 shows a lowpressure center moving off the New England coast and intensifying over a 36-hour period to become the $972-\mathrm{mb}$ storm (at maximum intensity), northeast of Newfoundland in the second part of the figure. This was the most intense low (in terms of central pressure) in the western North Atlantic during this four-month period. At 1200 UTC May 4, the Maersk Wind (S6TY) reported south winds of 50 kt and 6.5 -meter seas (21 feet) near 44N 43W, while the
Alligator Reliance (ZCBN5) encountered southwest winds of 45 kt
and 8.5-meter seas (28 feet) near 46 N 43 W , the highest seas reported in this storm. Six hours later, the Kometik (VCRT) reported southwest winds of 50 kt and 4.5 -meter seas (15 feet) at 46 N 48 W , followed by southwest winds of 40 kt and 8.5 -meter seas (28 feet) at 0000 UTC May 5 when the ship was at 47N 48W. This system subsequently lifted northeast and weakened, passing northwest of Iceland late on May 6.

Eastern North Atlantic Storm of 1516 May: Like the mid-June event to be described below, this storm originated as a secondary development on the southeast side of a parent gale-force low in the central North Atlantic. A 998-mb low formed near 45 N 27 W at 0000 UTC May 15 and absorbed the parent low to the northwest in the following twentyfour hours while intensifying to 982
mb . The maximum intensity was reached at 0600 UTC May 16 (980 $\mathrm{mb})$ when the center was at 49 N 22 W . Although not as intense as the midJune storm and with no ships reporting storm-force winds, reported seas were as high as 11.5 meters (37 feet) from the Sea-Land Developer (KHRH) near 45 N 24 W at 0000 UTC May 16. Reported winds from this ship were southwest 45 kt . This system subsequently began a slow weakening trend while drifting north, then northwest, before merging with a gale coming off the Canadian coast on May 18.

North Atlantic Storm of 19-21 May: This storm, unseasonably strong for late May, originated near the midAtlantic coast of the U.S. early on May 18 and followed a northeastward track. Figure 4 depicts the period of most rapid deepening of this system,

Figure 3. MPC North Atlantic Surface Analysis charts (Part 2) valid 0600 UTC May 3 and 1800 UTC May 4, 2002.

Marine Weather Review

Figure 4. MPC North Atlantic Surface Analysis charts: A Part 2 (west) panel valid 1200 UTC May 19 and a Part 1 (east) panel valid 1200 UTC May 21, 2002.
with the central pressure dropping 28 mb over a 48 -hour period. The system is shown near maximum intensity at $969-\mathrm{mb}$ central pressure just west of the British Isles in the second part of Figure 4. Six hours prior to this time, the central pressure was 968 mb , equal to the lowest pressure in the mid-June storm and the most intense (among non-tropical lows) of the May-August period in both the North Atlantic and North Pacific. This system became a storm by 1200 UTC May 20 near 50N 40W, when the vessel LAFQ5 (47N 36W) reported west winds of 50 kt and 6 -meter seas (20 feet). Six hours later, the same ship encountered northwest winds of 60 kt and 8 -meter seas (27 feet) near 47N 38W. At 0000 UTC May 21, the Queen Elizabeth 2 (GBTT) experienced northwest winds of 55 kt and 6 -meter seas (19 feet) near 47 N 31 W . At 1200 UTC May 21 the

Atlantic Cartier (C6MS4) reported from near 48N 21W with northwest winds of 60 kt and $11.5-$ meter seas (38 feet), the highest wind and sea conditions reported in this storm. The first part of Figure 5 shows this system weakening early on the May 22 while passing just west of Ireland, storm (maximum winds of at least 64 kt) at 1800 UTC May 23 (second part of Figure 5). A QuikScat image taken at about that time (Figure 6) shows the stronger winds occurring south and southwest of the center, with three $60-\mathrm{kt}$ wind barbs apparent near 51N 20W. Available conventional surface reports were

Figure 5. MPC North Atlantic Surface Analysis charts (Part 1) valid 0600 UTC May 22 and 1800 UTC May 23, 2002.

Marine Weather Review

Figure 6. QuikScat scatterineter unage if satekkute-sensed winds valid 1843 UTC May 23, 2002, or approximately the valid time of the second part of Figure 5.
(Image courtesy of NOAA/NESDIS/Office of Research and Applications)
outside the area of strongest winds. The Bonn Express (DGNB) reported the highest wind (a west wind of 45 kt) near 53 N 17 W at 0600 UTC May 24 , a time when the system was beginning to weaken. The Alligator Reliance (ZCBN5) sent three reports of seas 9 meters (30 feet) or higher
from 1200 UTC May 23 to 0000 UTC May 24, with the highest being 10 meters (33 feet) at 0000 UTC May 24 near 47N 30W (accompanied by a west wind of 30 kt). The system subsequently weakened and became stationary just northwest of Great Britain, where it dissipated on May
26.

Northeastern Atlantic Storm of 8-9
June: This developing storm took a more west-to-east track than preceding systems mentioned above, emerging off the southern Labrador coast at 0000 UTC June 7. Figure 7

Marine Weather Review

Figure 7. MPC North Atlantic Surface Analysis charts (Part 1) valid 1800 UTC June 7 and 0600 UTC June 9, 2002.
shows this system eighteen hours later, and 36 hours afterwards when the storm was at maximum intensity $(980 \mathrm{mb})$ just west of the British Isles. The ship ZCBP5 (50N 28W) reported a west wind of 45 kt and 10 -meter seas (33 feet) at 1800 UTC June 8. At 0600 UTC June 9, the Atlantic Cartier (C6MS4) encountered southwest winds of 50 kt and 5 -meter seas (16 feet) near 50 N 17 W . The high-resolution QuikScat image of Figure 8 valid at this time shows a large area of gale-force or higher winds on the south and southwest sides of the center with some $50-\mathrm{kt}$ flags mixed in. Twelve hours later, the buoy 62029 (48 N 12 W) reported seas of 7.5 meters (25 feet). This system subsequently turned toward the northeast and weakened northwest of the British Isles on June 10.

Northeastern Atlantic Storm of 15-
16 June: This storm developed from a secondary low passing to the
southeast of a parent low (Figure 9) in a manner similar to that described in the 15-16 May event. The most rapid period of intensification was the 24hour period ending at 1800 UTC June 16 , when the central pressure dropped 26 mb . The $500-\mathrm{mb}$ analysis (Figure 10) is for 1200 UTC June 16, within this period of rapid development. A short-wave trough and associated jet stream rounding the base of a largerscale trough support development.

The second part of Figure 9 shows the storm at maximum intensity (968 $\mathrm{mb})$. Along with the 19-21 May storm, this low was the most intense of the four-month period in both oceans, for non-tropical (or extratropical lows). The system in its intense phase passed through an area of sparse ship and buoy data, but a QuikScat pass (Figure 11) shows an area of winds to 60 kt northwest of Ireland about 6 hours prior to the time of the second part of Figure 9. The
highest wind reported by ships was 45 kt , from the southwest as reported by the Naparima (3FMM6) near 40N 26 W at 0600 UTC June 16 , and southerly from the Happy Buccaneer (PEND) near 52 N 11 W at 0000 UTC June 17. The Discovery (GLNE) reported the highest seas, 10.5 meters (34 feet) along with a south wind of 35 kt , near 64 N 5 W at 0600 UTC June 18. The buoy 64045 (59N 11W) reported a south wind of 30 kt and 9meter seas (29 feet) at 1800 UTC June 17. The storm then weakened while moving north, passing east of Iceland late on June 19.

Northeastern Atlantic Cyclonic

 Activity, 12-19 August: A weak lowpessure center passed east of the island of Newfoundland on August 12 and tracked east-northeast before turning more north while intensifying. The system reached a maximum intensity of 988 mb just west of Ireland near 57 N 14 W at 0000 UTC
Marine Weather Review

Figure 8. High-resolution QuikScat scatterometer image of satellite-sensed winds valid 0600 UTC June 9, 2002. The resolution is 12.5 km , versus $\mathbf{2 5} \mathrm{km}$ in regular QuikScat imagery (Figure 6). Wind barbs of 40 kt or higher stand out in this black-and-white reproduction of the original colored image.
(Image courtesy of NOAA/NESCDIS/Office of Research and Application)

August 15, when MPC classified it as a storm at that time and for the following six hours. Ship data was lacking, with the Norrona (OZ2000) reporting a southwest wind of 40 kt near 63 N 9 W at 0000 UTC August 16 as the system was passing just east of Iceland. The low-pressure system
which followed originated in the central North Atlantic and attained a similar intensity, 985 mb , near 55 N 14 W at 1200 UTC August 17 before lifting north and weakening near Iceland on August 19. A ship with callsign VRVQ9 near 51N 13W encountered south winds of 45 kt at

0000 UTC August 17, with a nearby buoy reporting 5 -meter seas (17 feet). The buoy 62106 (56 N 10W) reported south winds of 35 kt and 7.5 -meter seas (25 feet) at 1800 UTC August 17. \pm

Figure 9. MPC North Atlantic Surface Analysis charts (Part 1) valid 1200 UTC June 16 and 17, 2002.

Figure 10. MPC 500-Mb Analysis of North Atlantic valid at 1200 UTC June 16, 2002. The chart is computer-generated with short-wave troughs (dashed lines) manually added.

Mariners Weather Log

Figure 11. QuikScat scatterometer image of satellite winds valid approximately 0600 UTC June 17, 2002.
(Image courtesy of NOAA/NESDIS/Office of Research and Application)

Marine Weather Review

MARINE WEATHER REVIEW - NORTH PACIFIC AREA May to August 2002

George Bancroft
Meteorologist
Marine Prediction Center

Introduction

Low-pressure systems often tracked from southwest to northeast during the period, while high pressure prevailed off the west coast of the U.S. Occasionally the high pressure extended into the Bering Sea and Gulf of Alaska, forcing cyclonic systems coming off Japan or eastern Russia to turn more north or northwest or even stall. Several non-tropical lows developed storm-force winds, mainly in May and June. Later in the summer, with weaker cyclonic activity in the mid-latitudes, the tropics became more active. Most of the significant weather events during July and August were associated with tropical cyclones, or extratropical cyclones with tropical origin. Several of the tropical cyclones recurved northeast and became extratropical upon entering the mid-latitude westerlies near the latitude of Japan. Tropical cyclones were also present in the eastern Pacific, but these are covered by the Tropical Prediction Center in Miami.

Tropical Activity

Super Typhoon Hagibis: Hagibis appeared on the southern edge of MPC's oceanic Mercator surfaceanalysis area as a minimal typhoon at 0000 UTC May 18 near 16N 140E and moved north, with a gradual turn toward the northeast. The Mokihana (WNRD) reported a northeast wind of 35 kt and 8 -meter seas (27 feet)
near 18 N 139 E at 1200 UTC May 18. Maximum sustained winds increased from 65 kt to 120 kt in the 24 -hour period ending at 0000 UTC May 19, when th center reached 17.7 N 140.5 E . The system was briefly a supertyphoon (maximum sustained winds of 130 kt or higher) from 0600 to 1800 UTC May 19. At 1800 UTC May 19 Hagibis attained a maximum strength of $140-\mathrm{kt}$ (sustained winds), with gusts to 170 kt near 20.7 N 143.2E before beginning to weaken. Figure 1 shows Hagibis as a strong tropical storm crossing 160E into MPC's high seas area, the only tropical cyclone to do so during the May-August period, and then merging with the extratropical low (993 mb) at 40N 154E. In the second part of Figure 1, at 0600 UTC May 22, Hagibis has become extratropical and appears as the gale-force low (995 mb) at 41 N 179 E . At 0000 UTC May 22, the ship 3FQO4 (37N 175E) reported southwest winds of 40 kt and 6.5 -meter seas (21 feet). Twelve hours later, the vessel 4XFQ encountered southwest winds of 45 kt near 37 N 174W. At 0000 UTC May 24, the Leo Forest (3FPH8) encountered southeast winds of 35 kt and 8 -meter seas (27 feet) near 51 N 158 W . Also at that time, the Arctic Sun (ELQB8) near the eastern Aleutians (54 N 162 W) reported east winds of 45 kt . The remnants of Hagibis became a gale-force $985-\mathrm{mb}$ low in the central Aleutians by that time, before drifting northwest and weakening over the Bering Sea by May 26.

Typhoon Chataan: Chataan appeared on MPC's oceanic chart area just south of Japan at 0600 UTC July 10 with maximum sustained winds of 65 kt with gusts to 80 kt . Six hours later, the Tenaga Dua (9MSM) near 34N 140 E reported south winds of 65 kt . By 1800 UTC July 10, Chataan weakened to a tropical storm near 35.7N 140.9E. The CSX Defender (KGJB) at that time encountered southwest winds of 55 kt and 17meter seas (56 feet). The system became an extratropical gale-force low with central pressure 984 mb near 41 N 144 E at 0600 UTC and then continued to move north and weaken.

Typhoon Halong: Halong passed across the southwest corner of MPC's oceanic analysis area as a typhoon at 1200 UTC July 12, near 16N 136E, with maximum sustained winds of 110 kt with gusts to 135 kt . After becoming a super typhoon west of the area twelve hours later, Halong recurved toward the northeast and weakened. Halong then followed Chataan on a similar track, re-entering the waters south of Japan at 1800 UTC July 15 as a tropical storm undergoing extratropical transformation (Figure 2). Unlike Chataan, Halong re-intensified into a potent extratropical storm soon after transformation, appearing as the 976mb storm in the second part of Figure 2, just 12 hours later. At that time, the Polar Eagle (ELPT3) reported south winds of 75 kt near 36N 143E. A QuikScat pass valid about three hours

Figure 1. MPC North Pacific Surface Analysis charts (Part 2 - west) valid 0600 UTC May 21 and 22, 2002.

Figure 2. MPC North Pacific Surface Analysis charts (Part 2) valid 1800 UTC July 15 and 0600 UTC July 16, 2002.

Marine Weather Review

 3) Deta buffer la juil 16 11:19 CMI 2002-22 brs 4) Fiock borbs livicate possible rolh contamination

NOU/MESDC//Crilice of Reseench and Appilicotlons
Figure 3. QuikScat scatterometer image of satellite-sensed winds valid approximately 0900 UTC July 16, 2002. The valid time is only three hours later than that of the second part of Figure 2.
(Image courtesy of NOAA/NESDIS/Office of Research and Applications)
later (Figure 3), reveals a compact system with a small area of 50 to 60 kt winds just southeast of the center. An infrared satellite image of the storm (Figure 4) taken near the time of the second analysis in Figure 2 is suggestive of a hybrid system with some characteristics of a tropical
cyclone (central dense cloudcover and compactness) and of an extratropical low (such as becoming associated with a frontal cloud band over eastern Japan). The highest reported seas with this system after passing east of 135W was 12 meters (40 feet) from the Green Cove (WCZ9380) near

34N 140E at 0600 UTC July 16. This ship also reported southwest winds of 45 kt at that time. Extratropical "Hagibis" subsequently weakened to a gale-force low near the Kurile islands eighteen hours later before moving into the western Bering Sea on the July 18. After looping to the

Marine Weather Review

Figure 4. GMS infrared satellite image of extratropical storm "Halong" valid at 0532 UTC July 16, 2002. Satellite senses temperature, which is displayed on a scale from warm (black) to cold (white) in this type of imagery. The valid time is approximately the same as in the second part of Figure 2.

Marine Weather Review

south of the central Aleutians on 20 July, the remnants of Halong became a large gale in the southern Bering Sea on the 22nd before looping to the southeast and then northeast and finally moving inland over mainland Alaska late on July 26.

Super Typhoon Fengshen: Figure 2 shows Typhoon Fengshen which was centered just south of MPC's oceanic chart area and tracking west at the time. At 0000 UTC July 20 Fengshen appeared on the southern edge of the chart area near 16.0 N 158.5 E as a super-typhoon drifting west-northwest at 6 kt . The intensity peaked at 1200 UTC July 21 near 20.5N 154.3E with maximum sustained winds of 145 kt and gusts to 175 kt . Fengshen subsequently weakened to a minimal typhoon while passing south of Japan and west of MPC's surface-chart area by 0000 UTC July 25 .

Tropical Storm Fung-Wong: This system formed as a minimal tropical storm near 24 N 140 E at 1800 UTC July 20 with maximum sustained winds of 35 kt and gusts to 45 kt and drifted west, passing west of MPC's oceanic analysis area at 0000 UTC July 22.

Tropical

Depression 15W
(Kalmaegi): This tropical cyclone formed from a tropical
disturbance that was near 18 N 180 at 1200 UTC July 20, becoming Tropical Depression 15W (Kalmaegi) near 17.2N 178.1E, six hours later with maximum sustained winds of 30 kt with gusts to 40 kt . This system was short-lived, drifting northwest and dissipating at 1800 UTC July 21.

Tropical Depression 17W: This weak western Pacific tropical cyclone formed east of Japan near 34.2N 150.6 E at 0600 UTC August 5 and moved east 10 kt but dissipated as a remnant low 34 N 152 E twelve hours later. The maximum sustained winds were 25 kt with gusts to 35 kt .

Super Typhoon Phanfone: Phanfone entered the far southern waters in MPC's oceanic analysis area near 16.8 N 154.8 E at 1200 UTC August 13 with maximum sustained winds of 70 kt with gusts to 85 kt . The system tracked northwest and intensified into a super typhoon at 1800 UTC August 15 near 23.9 N 143.3 E with maximum
sustained winds of 135 kt with gusts to 165 kt . Phanfone remained a super typhoon through 1800 UTC August 16 before turning more north and slowly weakening. At 0000 UTC August 18, the Mirai (JNSR) encountered north winds of 50 kt and 8 -meter seas (26 feet) near 31N 134E. Figure 5 shows Phanfone down to minimal-typhoon strength near the coast of Japan at 1200 UTC August 19 , recurving northeast and becoming an extratropical storm within twentyfour hours with developing fronts. The CSX Defender (KGJB), appearing north of the storm center near 43N 149E in the second part of Figure 5, reported northeast winds at 40 kt. Extratropical "Phanfone" underwent rapid intensification in the following twelve hours, with the central pressure bottoming out at 972 mb near 44 N 152 E at 0000 UTC on August 21. This made it the second deepest non-tropical low in the North Pacific during the May-August

Figure 5. MPC North Pacific Surface Analysis charts (Part 2) valid 1200 UTC August 19 and 20, 2002.

Marine Weather Review

period. The Nyk Starlight (3FUX6) reported a southwest wind of 45 kt near 42 N 156 E six hours later. The system then weakened to a gale at 0000 UTC August 22, then passed south of the Aleutians before becoming absorbed by a gale-force low in the southwest Gulf of Alaska late on August 25.

Typhoon Rusa: Rusa followed a track west-northwest across the waters south and southeast of Japan, entering MPC's chart area at 0000 UTC August 23 near 16N 161E as a tropical storm with maximum sustained winds of 40 kt with gusts to 50 kt . Rusa intensified into a minimal typhoon near 19N 157E twenty-four hours later. The maximum intensity was 115 kt for sustained winds, with gusts to 140 kt , at 0600 UTC August 26 when the center was at 22.5 N
145.6E. The Chubu Maru (3FBJ7) at that time reported from 22 N 142 E with a north wind of 35 kt and 5meter seas (16 feet). Rusa then began a slow weakening trend, but remained a typhoon when passing west of 135 W and south of Japan at 0600 UTC August 28.

Tropical Depression Alika: This weak central Pacific tropical cyclone entered MPC's oceanic analysis area near 16 N 168 W at 0300 UTC August 28 and drifted northwest, dissipating at 1200 UTC that same day. The maximum sustained winds were 25 kt , with gusts to 35 kt .

Typhoon Sinlaku: Tropical Depression 22 W formed at 16.7 N 154.3E at 1800 UTC August 28 and became Tropical Storm Sinlaku near 20.5 N 153.2E twelve hours later, with
maximum sustained winds of 35 kt with gusts to 45 kt . Sinlaku became a typhoon near 22.5 N 152.6 E at 1200 UTC August 30 and developed maximum sustained winds of 110 kt with gusts to 135 kt at 0600 UTC August 31 near 23.7N 149.7E. The system turned more west by the end of the month, passing west of 135 W near 25 N early on September 3.

Typhoon Ele: Ele was formerly a central-Pacific hurricane which crossed 180W, becoming Typhoon Ele as such cyclones are called in the western North Pacific, on August 31. Further information on this system will be covered in the next issue of Mariners Weather Log.

Other Significant Events

North Pacific Storm of 25-27 May:
Figure 6 depicts this storm forming

Figure 6. MPC North Pacific Surface Analysis charts: Part 2 (west) valid 0600 UTC May 25 and Part 1 (east) valid 0600 UTC May 27, 2002.

Marine Weather Review

from the consolidation of two western North Pacific lows over a 48-hour period ending at 0600 UTC May 27. In terms of wind and sea conditions, the system was near maximum strength at 0600 UTC May 27 (second part of Figure 6). The central pressure actually dropped to as low as 970 mb at 1200 UTC May 28 when the center
was at 49 N 149 W , but the circulation of this system expanded in area with an associated decrease in winds to gale force. This central pressure was the lowest in the North Pacific during the four-month period among nontropical lows. The ship V7CX reported a southwest wind of 45 kt and 7.5-meter seas (25 feet) near 40 N

178W at 1200 UTC May 26. The QuikScat data in Figure 7 reveal a well-defined circulation and stormforce winds of 50 kt south of the center. Later, at 0000 UTC May 28, the vessel V7DL4 experienced west winds of 35 kt and 8 -meter seas (26 feet), the highest seas reported in this event.

Figure 7. QuikScat scatterometer image of satellite-sensed winds valid about 0600 UTC May 27, 2002, or the same valid time as in the second part of Figure 6.
(Image courtesy of NOAA/NESDIS/Office of Research and Applications)

North Pacific Storm of 7-8 June:

This system originated near the Kurile Islands early on June 3 and drifted east, with a new center forming to the east. Figure 8 shows the new center near 45 N 169W (995 mb) in the first panel, which curved toward the north and developed a lowest central pressure of 978 mb near the eastern Aleutians twenty-four hours later. The highest winds and seas with this system occurred near the eastern Aleutians early on June 8.

The NOAA ship Miller Freeman (WTDM) encountered northeast winds of 52 kt near 55 N 160 W at 0300 UTC June 8. The same ship reported from 55N 161 W three hours later with an east wind of 30 kt and $9-$ meter seas (30 feet), the highest seas observed in this storm. At that time another NOAA ship, the Rainier (WTEF), reported east winds of 45 kt at 56 N 158 W . The system then began a weakening trend while turning more
west into the Bering Sea.

Western Pacific Storm of 9-10 June:

The rapid development of this storm is shown in Figure 9, with the 1000 mb low down near 30N 143E at 1800 UTC June 8 absorbing another low to the north ($994-\mathrm{mb}$ center just north of Japan) twenty-four hours later. The United Spirit (ELYB2) near 42N 157 E reported southeast winds of 45 kt and 4.5 -meter seas (14 feet) at 1800 UTC June 9, while the ship H3EP encountered west winds of 45 kt at 39N 146E. The CSX Patriot (KHRF) experienced a southwest wind of 40 kt and 6-meter seas (20 feet) near 43 N 155 E at 0000 UTC June 11. The system slowed after 1800 UTC June 9 and looped northwest then southeast during the next twenty-four hours before heading northeast and weakening near the western Aleutians on the June 14.

Western Pacific Storm of 18-19

June: Much of the development of this compact system occurred over a

Marine Weather Review

twenty-four hour period and was unusually far south for the time of year. A low-pressure center (1000 mb) moved northeast off the southern coast of Japan after 0000 UTC June 18 and developed a $988-\mathrm{mb}$ central pressure at 0000 UTC June 19 near 40N 147E. The strongest winds were reported at this time, with the Mirai (JNSR) reporting a northwest wind of 55 kt on the backside of the system near 39 N 145 E , along with 9.5 -meter seas (31 feet). These impressive numbers, if reliable, are likely due to enhancement by the warm Kuroshio Current. The storm center continued a northeastward motion and began to weaken after developing a central pressure of 986 mb at 0600 UTC June 19. The system reached the central Aleutians as a gale-force low on the 22 nd, followed by some redevelopment in the Gulf of Alaska on the 25 th before weakening near the Alaskan coast on June 26.

Eastern North Pacific Storm of 7-8

July: This storm, while not among the most intense of the period in terms of central pressure, was accompanied by the highest reported winds among nontropical systems. Figure 10 displays the period of most rapid development of this slow-moving system over the twenty-four hour period ending at 1800 UTC July 7 , when the central pressure bottomed out at 992 mb . At 1200 UTC July 7, the Maersk Sea (S6CW) reported a southeast wind of 40 kt and 6meter seas (20 feet) near 43 N 147 W . At 0000 UTC July 8, or six hours later than the time of the second part of Figure 10, the Hanjin Amsterdam (DHDH) encountered a

Marine Weather Review

Figure 9. MPC North Pacific Surface Analysis charts (Part 2) valid 1800 UTC
June 8 and 9, 2002.

Figure 10. MPC North Pacific Surface Analysis charts (Part 1) valid 1800 UTC July 6 and 7, 2002.

Marine Weather Review

northwest wind of 58 kt and 6.5 meter seas (21 feet). These reported winds appear to be reliable and are supported by QuikScat data (not shown). A satellite image of the storm near maximum intensity is shown in Figure 11 and reveals a well-defined and mature cloud pattern and circulation center. The system subsequently continued an eastward drift and weakened. \pm

Reference

Sienkiewicz, J. and Chesneau, L., Mariner's Guide to the 500-Mb Chart (Mariners Weather Log, Winter 1995).

Figure 11. GOES-10 infrared satellite image of the storm in Figure 10, valid 2200 UTC July 7, 2002. The valid time is four hours later than that of the second part of Figure 10.

MEAN CIRCULATION HIGHLIGHTS AND CLIMATE ANOMALIES

A. James Wagner

Senior Forecaster - Climate Prediction Center NCEP/NWS/NOAA

MARCH - APRIL 2002

The map of mean $500-\mathrm{mb}$ height and height anomalies show generally above normal heights over much of the Pacific Basin, except for a stronger than normal trough at low latitudes northwest of Hawaii, mainly during April. A ridge extended north from middle latitudes of the Pacific into the Bering Sea and over Alaska, where surface pressures were well above normal. The Aleutian Low was noteworthy by its virtual absence, appearing only as a tiny 1016 mb contour in the mid-Pacific. The most extensive area of below normal heights in the Northern Hemisphere was over much of Canada, extending out across the North Atlantic, while to
the south, above normal midtropospheric heights and sea level pressures prevailed across most of the U.S. and middle latitudes of the Atlantic. The circulation was also somewhat more anticyclonic than normal over most of Europe, both at the surface and aloft.

Unusually cold air remained in place over most of Canada and southeastern Alaska, and frequent late-season Arctic outbreaks affected much of the central and northern sections of the Lower 48 States, especially during March. During April, the cold air remained over western Canada most of the time, and the strong Bermuda High expanded its area of influence northwestward, bringing early-season
warmth to much of the southern and eastern parts of the U.S.

Over the Eastern Hemisphere, a weak trough was located over central Asia but mid-tropospheric heights were above normal elsewhere. Most areas enjoyed above-normal temperatures, and excessively hot conditions developed over southeastern Asia and parts of the Indian subcontinent during April. Most of the two-month period was dry in Europe, where anticyclonic flow conditions prevailed.

Over the Pacific, La Niña conditions, characterized by below normal SSTs along the equator, were replaced in early March by moderately above

March-April 2002

500 mb Height, Anomaly

Sea Level Pressure, Anomaly

Marine Weather Review

normal SSTs, indicating the early stages of a new El Niño. Atmospheric indices, however, remained in the neutral range, showing that the warming of the SSTs along the equator had not yet had much effect on the overlying atmosphere. Impacts of El Niño on the atmosphere are usually greatest during its mature stage, which is not expected for several months and are most effectively transmitted to the middle latitude circulation during the colder part of the year.

MAY - JUNE 2002

The circulation during the late spring and early summer months was characterized by a band of fast westerlies extending from eastern Canada across the middle latitudes of the Atlantic, with a tendency for storms to stall just west of the British

Isles. Higher than normal pressure and generally anticyclonic conditions prevailed both at low latitudes and high latitudes of the Atlantic. Except for a blocking ridge over the west coast of Alaska and the Bering Sea, conditions were close to normal over the Pacific. No strongly anomalous circulation patterns were in evidence over the lower 48 states either, but this was due to highly variable conditions during the two months. May was on the cool side, with record low temperatures occurring in the Midwest and Northeast during the third week of the month, while June was predominantly warm, with hot weather, some of record proportions, developing over both the Southwest and the north-central states by the end of the month.

In Europe, temperatures were above
normal much of the time in northern areas, but hot weather developed over much of the southern and central parts of the continent during the latter part of June, where strongly anticyclonic conditions prevailed.

Over the tropical Pacific, El Niño conditions continued to develop. Equatorial SSTs were at least 1 C above normal over a wide area extending from just west of the date line to about 110 W longitude. A strengthening of the Humboldt current prevented the warm water from reaching the coast of South America. The Southern Oscillation Index, often taken as a measure of the phase of El Niño conditions, was negative for the fourth consecutive month in June, suggesting that the El Niño was beginning to have an effect on the atmosphere.

May-June 2002

JULY - AUGUST 2002

Stronger than normal anticyclonic conditions were in evidence at most mid- latitude locations during July and August, especially over the eastern Pacific, the Great Lakes region, the central Atlantic, and Scandinavia. Vigorous troughs and cyclonic activity were confined to a small area of the central Pacific southwest fo the Aleutians, the Arctic basin just north of the Canadian Archipelago, central Asia, and part of southern Europe and the
Mediterranean Basin. The storminess in southern and central Europe was associated with record flooding in some areas during August, and extended into eastern Europe. Abovenormal temperatures prevailed primarily over eastern Europe in July and the area of anomalous warmth
moved north to Scandinavia in August.

Record and near-record heat and increasing drought plagued many parts of the United States, and the summer as a whole (including June) ranked with the Dust Bowl summers of 1934 and 1936 and the recent hot summer of 1988 as among the hottest on record on a nationwide basis. Drought continued through most of the summer over much of the West and Southwest, where wildfires continued to be a problem. Drought began to develop in the eastern corn belt also under the anticyclonic flow pattern, following a spring that had mostly good rains.

Much of the Middle Atlantic area continued to have worsening drought, and the Northeast began to dry again
following fairly normal spring rains in most areas.

El Niño conditions continued to develop over the Pacific, and more atmospheric indices began to show its influence. Although typhoons were active over the western Pacific, dry conditions prevailed over eastern Australia and parts of Indonesia.

Eastern Pacific tropical storms were active also, but tropical activity over the Atlantic was relatively weak and infrequent until the very end of August, when several storms, mostly weak, formed in early September. All of these are typical atmospheric responses to El Niño conditions over the equatorial Pacific. \pm

Marine Weather Review

Marine Weather Review Tropical Atlantic and Tropical East Pacific Areas January through April 2002

Daniel P. Brown and
Hugh D. Cobb, III
Tropical Analysis and Forecast Branch,Tropical Prediction Center
Miami, Florida

Southwest Gulf of Mexico Storm

Events February, 2002: Several gale events typically occur over the southwest Gulf of Mexico each winter season. The gales develop when strong high pressure systems over the central United States build southward along the Mexican coast. The strong northerly winds are magnified over the extreme southwest Gulf as they funnel down the eastern slopes of the Sierra Madre Mountains. In Mexico, these events are known as a Achoclatero@ or Achocolate gale@ (American Meteorological Society, 2000) as large amounts of blowing sand and dust produce a brownish or chocolate-colored sky. In February, two such events produced storm force winds on both land and sea.

The first storm event occurred between 10-12 February. It began when a strong cold front entered the Gulf of Mexico shortly after 0600 UTC 10 February. An unusually strong 1052 mb high pressure center was located northwest of the front over the northern Rockies. As the high began to build over the Gulf behind the front winds increased to gale force over the western Gulf of Mexico. By 1200 UTC, the front extended from southeast Louisiana to the Mexican coast near 23EN 98EW. Buoy 42002 in the western Gulf near 26EN 94EW observed 34 kt winds with gusts to 40
kt at 1700 UTC. Wave heights at buoy 42002 quickly rose to 4.5 m (14 ft) by 2300 UTC.

At 0000 UTC 11 February, the front extended from the western Florida Panhandle to the southwest Bay of Campeche. The Koeln Express (9VBL) provided extremely useful hourly-observations from the southwest Bay of Campeche during this event (Figure 1). The ship experienced winds above gale force for 24 consecutive hours and
encountered storm force winds for 8 hours. The Koeln Express observed peak winds of 58 kt at both 0400 and 0500 UTC. Based on the observations a storm warning was issued for the extreme southwest Gulf of Mexico.

By 1800 UTC 11 February, the cold front was located from south-central Florida to the eastern Bay of Campeche. High pressure northwest of the front weakened and moved into eastern Texas. At this time, storm force winds ended over the southwest

Figure 1. Graph of Pressure and Wind Observations from the Koeln Express from 1800 UTC 10 February through 1000 UTC 12 February 2002. The two horizontal lines represent the 34 - and $50-\mathrm{kt}$ wind speeds.

Gulf and by 0600 UTC 12 February winds finally decreased below gale force over the entire Gulf of Mexico. This event also produced strong gales over the Gulf of Tehuantepec. It is suspected that the event reached storm force over the Gulf of Tehuantepec, however no verification of storm force winds was received.

The second storm event began early on 22nd February as a cold front entered the northwest Gulf. The front moved rapidly southeastward as a 1036 mb high over the Rockies built southward. The winds quickly increased to gale force behind the front. At both 1100 and 1200 UTC buoy 42002 reported northerly winds of 36 kt with gusts to 44 kt . Sea heights increased from less than 1 m ($2-3 \mathrm{ft}$) to $3.5 \mathrm{~m}(11 \mathrm{ft})$ in 3 hours. Again, the strongest winds occurred over the southwest Gulf of Mexico along the eastern slopes of the Sierra Madre Mountains. An 1137 UTC Quikscat pass detected 40- to $50-\mathrm{kt}$ winds from 21 N to 25 N west of 95 W . At 1145 UTC, Veracruz reported northerly winds of 18 kt . By 1318 UTC the winds at Veracruz increased very dramatically to $50-\mathrm{kt}$ with gusts to 60 kt . At 1609 UTC, Veracruz observed sustained winds of 60 kt with occasionally gusts estimated to an incredible 100 kt (Figure 2). Visibilities dropped to 1 statue mile in blowing sand, which is precisely why these events are referred to as a "chocolate gale." Just offshore, the Lykes Explorer (WGLA) near 20.5N 96W experienced northwest winds of 44 kt and combined seas of 5 m (16 ft) at 1800 UTC. By 1200 UTC 23 February, high pressure became established over the western Gulf along the coast of Texas and Mexico. At this time, the strong northerly winds decreased below gale force.

This event also produced storm force winds over the Gulf of Tehuantepec as indicated by a Quikscat pass at 2338 UTC 23 February.

Significant Weather of the Period

Tropical Cyclones:

None.

Other Significant Events of the Period

The January to April time period typically brings several strong cold outbreaks that produce gale force winds over the Gulf of Mexico and western Atlantic. Besides the two southwest Gulf of Mexico storm events featured above, five additional gale events occurred over the western Gulf of Mexico during the period. A couple of these events produced gales

Marine Weather Review

over the western Atlantic, while two storm centers north of the TPC forecast area briefly produced gales over the eastern Atlantic south of 31 N .

Several Gulf of Tehuantepec gale events occurred in the eastern Pacific.

Atlantic, Caribbean and Gulf of Mexico

Gulf of Mexico and West Atlantic

 Gales 2-7 January: During the first week of January, two separate lows developed over the Gulf of Mexico and produced gale conditions over portions of the Gulf and west Atlantic. The first low developed early on 1 January, along a stationary front over the southwest Gulf of Mexico. The low moved northeastward into the central Gulf and strengthened into a gale center by 0000 UTC 2 January. Gale force winds occurred over the

Figure 2. Graph of Pressure and Wind Observations from Veracruz, Mexico from 0600 UTC throuh 1900 UTC 22 February 2002. An estimated peak gust of 100 kt was indicated at 1600 UTC.

north and west semicircles of the system. Buoy 42002 near 26 N 93.5 W reported northerly winds of 33 kt with gusts to 40 kt , and seas of 4 to 4.5 m (14 ft) around 0600 UTC 2 January. The ship Pequot (ELTF6) over the central Gulf of Mexico encountered 35 kt winds at 0600 UTC. Later on the 2 nd, the gale moved eastnortheastward across the eastern Gulf of Mexico and central Florida. The system brought widespread rain to much of Florida and produced a weak tornado in Homestead (just south of Miami). At 0000 UTC 3 January, the gale was centered over the west Atlantic near 31 N 79 W . By this time, gale conditions ended over most of the Gulf of Mexico; however, as strong high pressure became established over the Gulf, strong northwest winds continued. Along the coast of Mexico, these winds reached gale force, and the Koeln Express reported hourly observations of 35 to 43 kt near Veracruz between 0500 and 1600 UTC. The gales finally ended over the entire Gulf by 0000 UTC 4 January.

Early on 4 January, the gale center strengthened into a storm off the North Carolina coast.

At this time, strong west to northwest gale force winds extended south to 27 N west of 65 W over the west Atlantic. A 1048 UTC Quikscat pass detected 35 to 40 kt winds. At 1200 UTC the Arctic Ocean (C6T2062) observed 37-kt winds near 30N 75W. The gale force winds spread eastward as the storm center moved northeast of Bermuda later on 4th January. Early on the 5th, the ship Kota Perwira (DEEU) encountered $41-\mathrm{kt}$ winds and combined seas of 5 to 7.5 m (17 to 25 ft) near 30 N 56 W .

Shortly after 1200 UTC 5 January, the storm center moved farther north, and winds decreased below gale force south of 31 N .

The second low developed along the coast of Texas on the 5th. It tracked farther north than the previous low, and at 0000 UTC 6 January was centered along the coast of southeast Louisiana. Shortly thereafter, several buoys in the northeast Gulf reported gale force winds. At 0200 UTC, buoy 42040 near 29 N 88 W recorded southeast winds of 36 kt , with gusts to 46 kt , and sea heights near 5 m (16 ft). Buoy 42039 near 29N 86W observed southeast winds of 37 kt with gusts to 44 kt at 0600 UTC. At the same time, the Chevron South America (ZCAA2) also encountered 36 kt winds over the northeast Gulf. After the associated cold front moved across the eastern Gulf, strong southwest to west winds continued. Sea heights continue to rise at buoy 42039 and eventually peaked at 5.6 m (18 ft) at 1600 UTC. By 1800 UTC, the low was centered over eastern South Carolina with the trailing cold front across south Florida to western Cuba. At this time, winds decreased below gale force over the Gulf of Mexico but increased to gale force over the western Atlantic. At 1800 UTC, drifting buoy 41645 near 30N 78 W reported south winds of 40 kt , while buoy 41010 (near 29N 78.5W) observed south winds of 32 kt , with gusts to 41 kt and seas to 4.6 m (15 $\mathrm{ft})$ just east of the front. At 0600 UTC 7 January, the low was located along the coast of New England, with the trailing cold front through 31N 73W to central Cuba. At this time, winds decreased below gale force over the Atlantic south of 31 N .

Marine Weather Review

East Atlantic Cold Front 23-24

January: A strong cold front associated with a storm center well north of 31 N produced a brief period of gale force winds over the eastern section of the TPC forecast area. At 1800 UTC 23 January, the front extended through 31 N 42 W to 25 N 65W. At 2143 UTC, Quikscat pass indicated gale force winds north of 28 N between 35 W and 48 W . Two ships, the Douce France (FNRS) and the Pavel Vavilov (UCKG), encountered northwest winds of 40 kt near 30 N 45 W at 0000 UTC 24 January. The event ended by 1200 UTC as the front reached from 27 N 35 W to 22 N 55 W .

Southwest Gulf of Mexico Gale 25-

26 January: The next in a series of strong Gulf of Mexico cold fronts moved off the coast of Texas just before 0000 UTC 25 January. A strong 1041-mb high, located over the central plains began building southward over the Gulf behind the front. As the front moved quickly southward across the western Gulf, winds increased to gale force shortly after 0600 UTC. Quikscat data from 1153 UTC detected an area of 30- to $35-\mathrm{kt}$ northerly winds south of 25 N west of 95 W . Two ships over the southwest gulf, the Empire State (KKFW) and the SIWN (name unknown), observed north to northwest winds of 37 kt at 0000 UTC 26 January. The high pressure north of the area weakened and moved eastward across the southeast United States, and by 1200 UTC a Quikscat pass indicated that gale force winds had ended.

Southwest Gulf of Mexico Gale 1-2
February: Another gale event occurred on 1-2 February over the

southwest Gulf of Mexico. A strong cold front moved off the coast of Texas around 0000 UTC 1 February. By 1200 UTC February 1, the front extend from the western Florida panhandle to the southwest Bay of Campeche. Northwest of the front, a $1036-\mathrm{mb}$ high centered over Colorado began building southeastward. Northerly gale force winds began blowing along the coast of Mexico south of 25 N west of 94 W . At 1200 UTC Tampico, Mexico observed 35kt northerly winds. Quikscat data at 0035 UTC 2 February detected gale force winds over the southwest Bay of Campeche. By 1200 UTC 2 February, the pressure gradient had weakened along the coast of Mexico, and winds had decreased below gale force.

Atlantic Cold Front 5-6 February: A combination of a storm center
northwest winds of 35 to 45 kt north of 27 N between 57 W and 73 W . The ships Galveston Bay (WPKD) and SWIN confirmed the Quikscat winds by observing 35 - to $40-\mathrm{kt}$ winds between 0600 and 1200 UTC 5 February. Early on the 6th, a high pressure ridge built across the western Atlantic from the South Carolina coast east to 28 N 60 W . By 0600 UTC 6 February, the winds had decreased below gale force south of 31 N .

Atlantic Gale 20-21 February: A gale center located well north of 31 N produced a brief period gale force winds north of 29 N between 55 W and 60 W . On the afternoon of 20
February, the gale center moved southeast and was located near 37N 55W. Two ships near 30N 58W, the Endeavor (WAUW) and the

Marine Weather Review

Endurance (WAUU) encountered gale force winds and seas of 5.5 to 7 m (18 to 23 ft) at 1800 UTC that day. On 21 February, the gale center weakened as it continued to move southeastward. Winds decreased below gale force by 0600 UTC. However, large swells of 4 to $6 \mathrm{~m}(14$ to 20 ft) continued across portions of the central Atlantic for the next few days.

West Atlantic Gale and Storm 24-26 February: At 0000 UTC 23 February, a low formed along the strong cold front mentioned in Section I over the southeast Gulf of Mexico. As the low deepened and moved northeastward across south Florida, winds increased over the eastern Gulf and western Atlantic. By 0000 UTC 24 February, the low became a gale center off the east coast of Florida near 29N 78W located well off the New England coast and an associated cold front over the west Atlantic produced an area of gale force winds across the northern portion of the TPC forecast waters. At 0000 UTC 5
February, westerly gale force winds began north of 28 N west of 60 W . The ship Choyang Zenith (DACP) experienced 40 kt winds near 31N 75W early on the 5th. The area of gales spread eastward, and a 1031 UTC Quikscat pass detected west to

Figure 3. Tropical Analysis and Forecast Branch surface analysis at 0000 UTC 24 February. Solid lines are isobars at 4-mb intervals with intermediate isobars as dashed lines.

(Figure 3). At this time buoy 41010, located 120 nmi east of Cape Canaveral Florida, reported sustained northerly winds of 35 kt with gusts to 46 kt . Sea heights at the buoy rose to a maximum of 5 to 5.5 m (16 ft) around 0600 UTC. The gale center moved northeastward, and a Quikscat pass at 1045 UTC placed the center near 30N 75W. The Quikscat data indicated 35 to 40 kt winds within 240 nmi of the center, mainly over the western semicircle.The Sealand Hawaii (KIRF) experienced 40 kt winds at 1800 UTC near 29N 71W. By 0000 UTC 25 February, the gale became a storm near 32N 70E. A Quikscat pass from shortly before 0000 UTC clearly detected both the storm force winds and the circulation center (Figure 4), and the storm force winds remained north of 31 N .
However, as the storm moved slowly
eastward on the 25th, it continued to produced gale force winds north of 28 N between 65 W and 72 W . The storm weakened to a gale by 0000 UTC 26 February, and by 1200 UTC 26 February winds decreased below gale force. The low continued to weaken and drift southward, finally dissipating near 27N 57W on 27 February.

Gulf of Mexico Gales 26-27

February and 2-4 March: The last two western Gulf gale events of the 2002 winter season occurred in late February and early March. The first event began as a cold front moved off the Texas coast shortly before 0600 UTC 26 February. The front was followed by a strong 1045-mb high located over the northern Rockies. Winds over the western Gulf quickly increased behind the front. Both

Figure 4. Quikscat data at 2306 UTC, 24 February, 2002.
(Image courtesy of National Environmental Satellite, Data, and Information Service)

Marine Weather Review

western Gulf buoys (42002 and 42020) observed northerly winds around 30 kt , with gusts to 38 kt for several hours beginning just after 1200 UTC. Sea heights at buoy 42002 peaked at $4.5 \mathrm{~m}(15 \mathrm{ft})$ around 0200 UTC 27 February. During this event, winds were once again the strongest over the extreme southwest Gulf of Mexico. Quikscat data from 2355 UTC detected 30 to 35 kt winds over the southwest Gulf. By 1200 UTC 27 February, the high pressure center moved over eastern Texas and weakened to 1035 mb . By this time, winds over the western Gulf of Mexico had decreased below gale force.

The last strong gale-producing cold front of the winter season moved off the Texas coast around 1500 UTC 2 March. Once again the winds increased very quickly behind the front. At 1800 UTC, buoy 42020 reported northerly winds of 34 kt , with gusts to 42 kt . At 0000 UTC 3 March, the front extended from New Orleans, Louisiana to just south of Tampico, Mexico. At that time, the Dusseldorf Express (S6IG) in the extreme northwest Gulf experienced northwest winds of 35 kt . At 1200 UTC, the ship Celebration (H3GQ) observed 34 kt winds near 27 N 91.5 W . Around the same time, buoy 42002 reported 34 kt winds, with gusts to 42 kt . The buoy later recorded a maximum wave height of $5.5 \mathrm{~m}(18 \mathrm{ft})$ at 1600 UTC . By 0000 UTC 4 March, the cold front extended from central Florida to the Yucatan Peninsula. At that time winds decreased below gale force, but winds remained northerly at 25 to 30 kt over the eastern Gulf of Mexico until early on 5 March.

Central Atlantic Gale 3-4 March:

Beginning on 2 March, a tight pressure gradient formed between a strong high pressure ridge over the west Atlantic and a weak stationary front that extended across the central Atlantic from 31 N 43 W to 20 N 55 W . The tight pressure gradient produced a large area of strong northeast winds northwest of the front to 65 W . By 1200 UTC 3 March, the pressure gradient became strong enough to produce gales over the area north of 25 N west of the front to 60 W . Several ships in the area, including the Chiquita Belgie (C6KD7), the Kielgracht (PFJI), and the Patroit (KGBQ), encountered 34 to 37 kt winds between 1200 UTC 3 March and 0000 UTC 4 March. The ships observed combined seas of 4 to 6 m (13 to 20 ft). By 1800 UTC 4 March, the stationary front dissipated, while the ridge over the western Atlantic retreated northeastward. At that time, winds decreased below gale force.

East Atlantic Gale 20-21 March: A

 storm center which moved rapidly east-northeastward across the central and east Atlantic between 32 N and 36 N produced gale force winds over the northeast portion of the TPC forecast area. The gales began around 1200 UTC 20 March over the area north of 28 N east of 48 W . At 0000 UTC 21 March, the $980-\mathrm{mb}$ storm was centered near 36 N 39 W . At that time, the ship Thorkil Maersk (MSJX8) observed southwest winds of 33 kt near 30N 35W. Quikscat data from 0824 UTC 21 March confirmed the gale force winds by detecting a large area of 35 to 40 kt west to northwest winds. On 21 March, the storm moved farther northnortheastward away from the TPC forecast area. Gales force winds ended south of 31 N around 1200 UTC.Large northerly swells of 4 to 6 m (12 to 18 ft) continued for another couple days over the eastern portion of the TPC forecast area north of 20 N east of 60 W .

Eastern Pacific

The eastern North Pacific was affected by twelve Gulf of Tehuantepec gale and storm events, and one gale event that resulted from strong trade winds. The twelve events in the January to April 2002 period far exceeded the number of events in 2000 (6) and 2001 (8). Two of the events reached storm intensity.

The overall synoptic pattern in the January-April period featured a broad, long wave trough over the western and central United States, with frequent surges of polar and arctic air into the Great Plains. These surges were accompanied by strong anticyclones with central pressures exceeding 1040 mb over the southern Rockies. These anticyclones maintained central pressures of 1035 mb or greater into Texas and resulted in significant pressure surges over the western Gulf of Mexico and the Isthmus of Tehuantepec.

Gulf of Tehuantepec: The first two Gulf of Tehuantepec events of 2002 occurred close together in the first week of January. The first event began at 0000 UTC 3 January and ended 1800 UTC 4 January. The ship Cabo Creus (ZCBQ8) reported northnortheast winds of 40 kt and seas of 3 m (10 ft) at 0000 UTC 3 January while located near 15 N 95 W . A Quikscat pass at 1200 UTC 4 January indicated northerly winds of 30 to 35 kt.

The second event began at 0600 UTC

Marine Weather Review

6 January and was rather prolonged in nature, extending into 9 January and ending around 1200 UTC. The Polar Chile (ELTN6) reported eastnortheast winds of 35 kt and seas of $4.5 \mathrm{~m}(15 \mathrm{ft})$ at 1800 UTC 6 January while located near 14.5 N 96 W . In addition, four Quikscat passes confirmed gale force winds over the course of this event. Thirty-five to $40-$ kt northerly winds were noted on the 0054 UTC 9 January pass.

The third Gulf of Tehuantepec gale event was a marginal event. The event began around 0000 UTC 16 January and lasted only 18 hours. A 1212 UTC 16 January Quikscat pass indicated an area of 30 kt winds.just under gale force.

The fourth event commenced 10 days later around 0000 UTC 26 January and lasted until 1200 UTC 27 January. The ship PBBU (name unknown) located near 14 N 95.5 W reported north-northeast winds of 37 kt and seas of $5.5 \mathrm{~m}(18 \mathrm{ft})$ at 0000 UTC 26 January. Six hours later, the same ship reported northerly winds of 30 kt and seas of $4 \mathrm{~m}(13 \mathrm{ft})$ while located near 13.5 N 94.5 W . A 2354 UTC 25

January Quikscat pass indicated winds of 35 kt in the Gulf of Tehuantepec.

A total of six Gulf of Tehuantepec gale events were noted during the month of February, more than the combined total of events for February in the years 2000 and 2001. The first event in February began near 0000 UTC 2 February and ended at 1800 UTC 3 February. Quikscat passes at 0000 UTC and 1143 UTC 2 February indicated 40 kt northerly winds. The next event followed a week later, commencing at 0000 UTC 8 February and lasting roughly 36 hours. A 1230

UTC 8 February Quikscat pass indicated $35-$ to $40-\mathrm{kt}$ winds in the Gulf of Tehuantepec.

The seventh gale event of the period began at 0600 UTC 11 February and lasted until 1800 UTC 12 February. A 1222 UTC 12 February Quikscat pass indicated 35 kt northerly winds. This was the first of three events which occurred at an interval of 6 days.

The strongest Gulf of Tehuantepec wind event for February, and one of two storm events of the period, began at 0000 UTC 23 February and lasted until 1200 UTC 24 February. The precursor signature, a much stronger than normal pressure surge along the Sierra Madre in Mexico on 22 February, resulted in 80 - to $100-\mathrm{kt}$ wind gusts at Veracruz (See section Southwest Gulf of Mexico Storm Events February, 2002).

At 1800 UTC 23 February, the ship

Sunbelt Dixie (D5BU) reported north-northeast winds of 40 kt while located near 14.5 N 95 W . Later, a 2338 UTC Quikscat pass (Figure 5) indicated $40-$ to $50-\mathrm{kt}$ winds in the Gulf of Tehuantepec.

The last gale event for the month began at 0600 UTC 27 February and lasted a little over 30 hours. No Quikscat data was available to verify gale force winds; however, the ship Maersk Wind (S6TY) observed 25-kt winds at both 0600 and 1200 UTC 28 February, well south of the Gulf of Tehuantepec. Therefore, it is assumed that gale force winds did occur over the Gulf.

A late season arctic air mass swept into the Gulf of Mexico on 3 March and ushered in the first Gulf of Tehuantepec wind event for March, and the second storm event for the period. The event began at 0600 UTC 4 March and ended around 1200 UTC

Marine Weather Review

6 March. A 1216 UTC 4 March
Quikscat pass (Figure 6) indicated 40to $50-\mathrm{kt}$ winds in the Gulf of Tehuantepec.

The final gale event of the season began at 0600 UTC 21 March and ended at 0000 UTC 24 March. This was the second of two prolonged gale events, lasting nearly 66 hours. A 2347 UTC 22 March Quikscat pass indicated northerly winds of 35 to 40 kt in the Gulf of Tehuantepec.

Strong Trade Winds Event 16-19 January: A strong anticyclone developed over the central Pacific Ocean between 35 N and 40 N along 140 W , with a central pressure near 1040 mb , at 0000 UTC 16 January. Further south, a surface trough was located along 135 W between 10 N and 20N.

The strong pressure gradient between these features resulted in gale force

Gulf of Tehuantepec Gale and Storm Events (January - April 2002)		
Event	Beginning	End
1	0000 UTC 03 January	1800 UTC 04 January
2	0600 UTC 06 January	1200 UTC 09 January
3	0000 UTC 16 January	1800 UTC 16 January
4	0000 UTC 26 January	1200 UTC 27 January
5	0000 UTC 02 February	1800 UTC 03 February
6	0000 UTC 08 February	1200 UTC 09 February
7	0600 UTC 11 February	1800 UTC 12 February
8	0600 UTC 17 February	1800 UTC 17 February
9	0000 UTC 23 February	1200 UTC 24 February
10	0600 UTC 2 F Fbruary	1200 UTC 28 February
11	0600 UTC 4 March	1200 UTC 6 March
12	0600 UTC 21 March	0000 UTC 24 March

Figure 5. (above) Quikscat data at 2338 UTC, 23 February, 2002. Note 50 kt wind barbs in the Gulf of Tehauntepec.
(Image courtesy of National Environmental
Satellite, Data and Information Service)
winds beginning 2230 UTC 16 January in an area extending from 20 N to 28 N , between 130 W and 140 W . The area of gales lasted over 60 hours, finally ending around 1630 UTC 19 January. A 1008-mb surface low was indicated along the trough for a 12-hour period beginning 1200 UTC 17 January near 17N 135W.

The surface anticyclone gradually moved westward and weakened along 150 W by 1200 UTC 19 January, allowing the surface winds to weaken below gale force.

There were several ship reports of gale force winds during this event. Two ships reported gale force winds at 0000 UTC 17 January.

The ship Chevron Nagasaki

Marine Weather Review

(C6FD8) located near 26N 140W reported east-northeast winds of 36 kt , with seas of $4 \mathrm{~m}(13 \mathrm{ft})$.

The ship Ocean Spirit (ELKI8)

 reported east-northeast winds of 35 kt and seas of $4 \mathrm{~m}(13 \mathrm{ft})$ while located near 26.5 N 133 W .The ship Direct Eagle (9VRA) reported gale force winds for an 18hour period between 1800 UTC 18 January and 1200 UTC 19 January while traversing the pacific along 2122 N between 140 W and 135 W . Seas averaged $5 \mathrm{~m}(16 \mathrm{ft})$.

Reference

American Meteorological Society (AMS), "Glossary of Meteorology, Second Edition," 2000.

Figure 6. Quikscat data at 1216 UTC, 4 March, 2002. Note 50-kt wind barbs in the Gulf of Tehauntepec.
(Image courtesy of National Environmental Satellite, Data, and Information

Environment Canada

Canadian VOS Program Special Award

Roland Kleer,
PMO Canadian VOS Program

In the Ontario Region of the VOS program, there are approximately 80 participating vessels in the Canadian VOS Program, and the Individual Observer Award is presented to the top 20 observers each year. In 2001, the top observer performed 1,198 voluntary observations.

The award changes from year to year. Each year the PMO office comes up with something unique. The award for 2001 is a hardcover book on Canadian Service ships, Coast Guard, etc. Inside each book is a personalized nameplate from the Government of Canada recognizing the voluntary work done by the observers. The observers look forward to the award each year and compete for the honour of receiving one, which in turn helps the VOS program because it means that there will be more observations reported.

The observers are never told in advance what the award will be for the year, so there is always some anticipation generated among the ships' crews.

If one were to look at the number of shipwrecks on the Great Lakes historically, the importance of these

Roland Kleer PMO Ontario presenting the Individual Observer Award for the Ontario VOS region for the year 2000 to Quartermaster Steve O'Connel on the Canadian Ship Griffon.
voluntary observations becomes self evident. The Great Lakes can and do whip up some deadly storms, especially in the fall, so I like to hand out last year's award in mid to late summer, in order to encourage the observers to do even more observations for the next award. That is the reason we like to make the award something substantial, something of value.

Over half the winners are "regulars," meaning they win an award almost every year. They spur each other on to do more observations, which in turn makes marine forecasting much easier.

It's a simple formula: more coverage and observations translates into more accurate forecasts.

Everybody wins. \$

Alaskan Awards

TOP 10 VOS WEATHER REPORTING VESSELS IN ALASKAN WATERS SEPTEMBER 2002			
VESSEL			NO. OF
OBS			
1.	SENECA	WBN8469	128
2.	POLAR EAGLE	ELPT3	100
3.	KENNICOTT	WCY2920	97
4.	NAVIGATOR	WBO3345	96
5.	MALOLO	WYH6327	95
6.	SINUK	WCQ8110	89
7.	ARCTIC SUN	ELQB8	88
8.	TUSTUMENA	WNGW	60
9.	SEABULK PRIDE	WCY7052	56
10.	SEA VICTORY	WCY6777	54
TOTAL SEPTEMBER 2002	$\mathbf{2 0 1 6}$		

TOP 10 VOS WEATHER REPORTING VESSELS IN ALASKAN WATERS JANUARY - SEPTEMBER 2002			
	VESSEL		NO. OF ORS
1.	ARCTIC SUN	ELQB8	814
2.	POLAR EAGLE	ELPT3	807
3.	CSX ANCHORAGE	KGTX	776
4.	GEMINI	V7BW9	700
5.	KENNICOTT	WCY2920	675
6.	SENECA	WBN8469	675
7.	NAVIGATOR	WBO3345	661
8.	CSX KODIAK	KGTZ	555
9.	CSX TACOMA	KGTY	501
10.	SEABULK MONTANA	WCW9126	456
TOTAL JANUARY-SEPTEMBER 2002			18,795

Coastal Forecast News

1st Mate Jeff Coryell of the Crowley Tug Navigator received an Outstanding Peformance Award for June 2002, in which the Navigator took 100 observations.

Alaska Marine Meterologist Aimee Devaris presenting a Special Company Award to Art Jacobsen who is the Manager of Alaska Marine Operations for Crowley Marine Services, Inc. Crowley has been a big supporter of the Alaska Region shipboard weather observation program. Three of their tugs made the Alaska Top 10 List for 2001: the Guardian had 810 observations, the Seneca 656 observations, and the Warrior had 615.
The Crowley fleet of tugs, by far, take the most weather observations in Alaska waters compared to any other company.

CSX Kodiak Captain, Barry Costanzi, received an Outstanding Performance Award while at Anchorage, Alaska on May 21, 2002. During the period January through April 2002, their total of 290 observations put them in 5th place and well ahead of their pace of 2001.

The crew of the Manfred Nystrom left to right: Chief Mate George Nielsen, 2nd Mate Charley Hobbs, and Able Bodied Seaman Rick Reines received an Outstanding Performance Award while at the Port of Anchorage on July 12, 2002. They had 104 observations for April 2002, which was the 2nd highest total in Alaska.

3rd Mate Fred Koster of the CSX Tacoma (right) received an Outstanding Performance Award while in the port of Anchorage Alaska on April 16th, 2002 for being in the top 12 ships in Alaskan waters for the first 3 months of 2002 , with 136 observations. Below, he received an Outstanding Performance Award for being in the Top 10 of the most active ships in Alaskan waters for the first 4 months of 2002.

National Weather Service VOS Program New Recruits From 01 May to 31 October 2002

NAME OF SHIP	CALL	AGENT NAME
Agrium	WAB930	AGRIUM-KENAI NIROGEN OPERATIONS
ALISON H	WX9885	BOYER ALASKA BARGE LINE
AURORA	WYM9567	AURORA-ALASKA MARINE HIGHWAY SYSTEM
BRENDA H	wusi7t	BOYER-BRENDA H
CHARLOTTE MAERSK	OWLD2	MAERSK PACIFIC LTD
COASTAL EXPLORER	wCY3172	COASTAL EXPLIORER-CHUCK KIEM
COLUMBUS VICTORIA	P3RF8	ESSRIOMAR
DISCOVERER DEEP SEAS	HP9685	CHEVRON USA
DISCOVERER ENTERPRISE	3FZQ7	DISCOVERER ENTERPRISE
EL BARTLETT	WY6244	ALASKA MARINE HIGHWAY SYSTEM
GLEN Ross	ELPV8	TEXICAN STEAM NAVIGATION LTD
GYR FALCON	WCU6587	GYR FALCON
hatsueagle	ZNZH6	EVERGREEN AMERICA CORP
hatsu eagle	ZNZH8	EVERGREEN AMERICA CORP
hatsu envoy	VSQL9	EVERGREEN AMERICAN GROUP
HATSU EXCEL.	vsxv3	EVERGREEN AMERICA CORP
HENERISR.	WTW9260	SAUSE BROS OCEAN TOWING CO
INDAMEX IMPALA	V2AXI	INCHAPE SHIPPINO SER VICES
INDUSTRIALCHALIENGER	WDHL	PACIFIC GULP MARINE
ISLAND WARRIOR	WDA9217	ISLAND TUG AND BARGE ISLAND WARRIOR
JUSTINE POSS	WYL4978	FOSS MARITIME
KASIF KALKAVAN	TCLR	TURKON AMERICA. INC.
KEISHO	3FYN4	WORLD MARINE CO, LTD.
KEKOA	WCY5542	SAUSE BROS OCEAN TOWING-KEKOA
LIBERTY Grace	WADN	LIBERTY MARATIMR CO
LOCHNESS	ELP49	TEXICAN STEAM NAVIGATION LTD
MV GEYSIR	WCZ5528	TRANSATLANTIC LINE
MAERSK CONSTELATION	WRYJ	MAERSK
MAERSK GEELONG	S6NW8	STRACHAN AGENCY
MALISPINA	W16803	ALASKA MARINE HIGHWAY SYSTEM
MSC INORID	HOHA	MEDITRRANEAN SHIPPING CO. S.A.
NORCOASTER	WYPT276	B\&C FISHERIES
NORTHERN VICTOR	WC76534	FIV NORTHERN VICTOR
OVERSEAS BOSTON	KRDB	alaska tanker co. overseas boston
PACIFIC FREEDOM	WDJF	SEA COAST TOWING
PHYLUS DUNLAP	WDA6552	DUNLAP TOWING INC
PONT BARROW	WBM5088	CROWLEY-PONT BARROW
polar resolution	WDJK	POLAR TANKERS
PRIMO BRUSCO	WBT4608	PRIMO BRUSCO COO BRUSCO TUG AND BARGE
ROVER	KCBH	Marine transport lines
SAUDI ABHA	HZRX	NSCSA (AMERICA) INC
SAUDI DIRIYAH	HZZA	BIEFL \& CO
SEA VICTORY	WCY6777	CROWLEY MARITIME INC
SEABULK PRIDE	WCY7052	ALASKA MARTIME SEABULK PRIDE
SEANA C	WDA4482	SEA COAST TOWING
SHELA MCDEVITT	WDA 4069	TECO OCEAN SHIPPING
SIOUX	WBN7617	CROWLEY MARITIME INC
SPIRIT OF OCEANUS	Csps	CRUISE WESTENC
TAMESIS	LAOLS	WJ. Browning CO.
TMM GUADALAJARA	vSXC4	AMERICANA
TMM TABASCO	vsuas	American shipping \& Catering
TONSINA	KIDG	ALASKA TANKER CO. TONSINA
TRIDENT	WCZ2913	B\&C FISHERIES
TYCOM RESPONDER	V7CY9	Transmarine navioation
USCGC JARVIS	NAQD	U.S. COAST GUARD USCGC JARVIS
USCOC SYCAMORE	NTGG	U.S. COAST GUARD USCGC SYCAMORE
USNS BRITTIN	NBVJ	
USNS EFFFCTIVE	NCWL	
USNS MARY SEARS (T-AGS-65)	NRFR	NAVOCEANO
VIKING STAR	WAS4138	VIKING STAR
WESTWOOD RANIER	CSS13	OCEAN AGENCIES, INC
ZENTTH	WBV3237	BEC FISHERIES
ZIM HOUSTON III	V2AX3	ZMM AMERICAN
ZIM VIRGINIA	$9 \mathrm{HCC7}$	ZMM CONTAINER SERVICE

VOS Awards

VOS Program Awards

NOAA Ship Albatross IV crewmembers left to right: CDR Peter Celone, LCDR Phil Cruccis, LTJG John Crofts, and 2nd Officer Steve Wagner received the 2001 VOS Outstanding Performance Award.

3rd Mate Pamela Taylor of the CSX Anchorage received a National VOS award for 2001 while in
Anchorage, Alaska on May 14, 2002. The CSX Anchorage had 729 observations in 2001, which was the third highest total in Alakan waters. For the period Jan - Apr 2002, the CSX Anchorage was in 1st place in the Alaska rankings with $\mathbf{4 1 8}$ observations. They are well ahead of their excellent pace of 2001.

The SS Badger received a 2002 VOS award. Pictured left to right: 1st Mate Mike Miller, CAPT Dean Hobbs, 3rd Mate Mike Steward, CAPT Kevin Fitch, and 2nd Mate Allan Chrenka. This was the first year for the Badger, and they took $\mathbf{4 2 0}$ observations. Good work considering they don't sail mid October - mid May. The SS Badger is a car ferry that sails from Manitowoc, WI to Ludington, MI.

The M/V Chesapeake Bay was presented with a VOS award by Mr. Peter Gibino in Norfolk in late February. Pictured from left to right: CAPT Seth Harris, Master, 2nd Officer Jan W. Waalewyn, 3rd Officer Michael F. Lyons, Chief Officer Bryan C. Byrne, and Radio Officer John L. Shettles, III.

The NOAA ship Delaware II received a 2001 VOS Outstanding Performance Award. Pictured left to right: ENS Bryan Wagonseller, LTJG Nick Chrobak, and ENS William Whitmore.

The Lykes Discover received a 2001 VOS Outstanding Performance Award. Pictured left to right: Chief Mate Harold Held, CAPT Scott Putty, Chief Mate Robert P. Strobel, Jr., and PMO Chris Fakes.

VOS Awards

PMO Chris Fakes, center presents a VOS Award to CAPT Wes Winters (left) and 2nd Mate Doug Vines (right) of the Sealand Integrity.

VOS Awards

Chief Mate Jeff Cowan received the 2001 VOS Superior Performance Award onboard

PMO Chris Fakes presented a 2001 VOS Outstanding Award to Master Pete Mitchell (left) and Master James Brennan (right) of the Sealand Pride.

VOS Awards

Pictured left to right: Chief Mate Charles Tessaro and 2nd Mate Roger Peterson received a National VOS Award for 2001 while at the Port of Anchorage, Alaska on May 24, 2002. This is the 2nd year in a row that the Crowley Tug Seneca has won this prestigious National Award.

The CSX Spirit received a 2001 VOS Superior Performance Award. From left to right: 2nd Mate Warren Bragg, CAPT Erik Williamson, and 3rd Mate Gary Lightner.

The Crew of the Susan W. Hannah received a year 2000 VOS Award.
Pictured left to right: 2nd mate John King, CAPT Clark King, and 1st Mate Rich Deichelbor.

VOS Cooperative Ship Report January 1，to November 21， 2002
The values under the monthly columns represent the number of weather reports received at NCDC．The current month plus the previous 3－4 month＇s numbers reflect real－time observations plus the delayed mode observations as they are received and entered．

Ship Nawe	Call	Pert	Jan	Feb	Menr	Apr	Hay	Jun	Jul	Aag	Sep	oet	Hev	Dec	Sotal
157 UT BALDCMERO LOPEZ	MJEV	Jacksonville	26	0	0	0	0	0	27	71	0	0	0	0	124
157 UT JACK LUMMIS	MJLV	WYC	0	17	0	29	0	25	15	16	19	0	0	0	121
2ND LT．JOHN P．BCBO	MJEH	Norfolk	0	0	0	B	21	3	11	7	2	38	31	0	121
A．P，MOLLER	OVTO2	Seattle	0	36	24	0	0	2	0	28	21	0	21	0	132
ADVKNTMGE	MPPO	Horfolk	1	0	2	5	17	2B	8	24	5	0	6	0	97
ADVENTURER	Nam3015	Anchorage	0	0	0	0	0	46	72	0	0	0	0	0	118
MGNES POES	WYZ3112	Sodiak	0	0	1	25	0	13	18	16	3	3	3	0	83
NGRIUM	NAB930	Anchoraga	0	0	0	0	0	0	0	0	0	32	19	0	71
AGULEAS	3ELE9	Baltimara	0	0	0	7	0	0	0	0	0	0	0	0	7
ALEEMRRLE ISLLAND	C6LLJ 3	NYC	62	63	77	38	36	4	27	2 A	61	59	46	0	553
ALERT	WC27335	Anchoraga	0	0	0	0	0	1	0	0	0	0	0	0	1
ALIECN H．	NX9885	Kodiak	0	0	0	0	11	25	2	5	0	0	0	0	43
ALEEGLANCE	WSKD	Nortolx	0	44	0	9	0	2	7	0	0	0	0	0	62
ALLIANCA ROTTERDAM	DHGE	Baltimora	0	0	0	18	0	11	11	0	0	0	0	0	40
ALLICNTOR FORTUNE	ELPKT	Seattle	0	0	0	11	0	12	0	0	0	0	0	0	23
ALLICKTOR GLORY	ElatP2	Seattle	0	0	0	32	0	24	16	0	0	0	0	0	72
ALLIGATOR STREVGTH	3FAK5	Oakland	0	0	0	0	26	24	22	41	26	32	28	0	199
ALPEMS	Whv4647	cleveland	0	0	0	0	0	0	0	1	2	0	0	0	3
ALPHA HELIX	WSD7078	Kodiak	0	0	11	22	17	15	10	9	14	3	0	0	101
ALThIR VOYAGER	C60x	Baltimora	25	102	107	0	6 B	37	5	12	1	14	3	0	374
AMRASSADOR BRIDOE	3ETY9	Oakland	61	56	0	97	0	51	41	0	0	0	0	0	316
AMERICAN MARINER	W027791	cleveland	0	0	0	21	0	0	3	B	5	1	0	0	38
ANASTMSIS	$9 H 02$	Miani	0	0	3	0	0	4	7	0	3	12	13	0	42
ANCKERGRACHT	PCQL	Baltimore	0	0	0	30	11	50	39	25	2 B	57	30	0	270
APACHE	WCYS541	Kodiak	0	0	0	0	0	9	4	0	0	0	0	0	13
APL CHINA	56 TA	Seattle	36	34	30	65	60	70	27	67	52	50	24	0	515
APL GAREIET	9yurd	Oakland	0	0	0	0	28	19	19	8	25	0	0	0	99
APL JRPAN	50 TS	Seattle	23	47	25	72	215	31	48	38	33	29	37	0	598
APL KOREA	Wcxisidy	Seattle	40	20	11	27	32	16	12	30	31	23	14	0	256
APL PHILIPPIMES	Wcxishes	Seattle	33	4	14	6	27	238	56	0	1	21.	7	0	407
APL STNGAPCRE	wcxh812	Seattle	42	47	14	45	48	47	61	51	55	52	35	0	507
APL THAILAND	wcxisis	Seattle	31	33	25	32	41	303	31	44	42	42	1	0	625
APL TURGUOISE	9vyr	Cakland	0	16	0	25	20	8	20	21	49	67	31	0	257
APOLLOGSACH\％	pesy	Baltinore	24	2	1	14	0	9	10	24	23	25	21	0	152
ARCFIC BEAR	W3p3396	Kodiak	0	1	0	3	19	20	11	0	3	0	0	0	56
ARCFIC OCEAN	C672062	NrC	2	0	0	26	0	0	0	0	3	6	0	0	31
ANCEIC SUA	約边	Anchorage	90	212	96	176	66	76	77	81	72	87	67	0	1098
AngONaUT	KPDV	NYC	0	0	0	0	7	2	21	24	20	29	35	0	138
ARIES HAROTOHY	3 FEr ？	Seattle	8	8	23	7	6	10	6	11	4	5	5	0	93
ARISO	3 ทis6	Seattle	9	31	0	45	0	？	51	38	21	0	1	0	203
ARMCO	WE6279	Cleveland	0	0	0	0	4	4	3	2	0	0	0	0	13
ARTHUR M．ANDERSCEI	WE4805	Chicago	0	0	0	46	5	71	18	28	8	11	4	0	191
ASTORIA HRIDGE	ELalis	Heraston	49	61	20	47	40	45	3	0	0	0	9	0	265
AFLNNTIC CARTIEA	C6m54	Norfolk	39	42	14	5	46	45	32	29	41	44	25	0	362
AFLNNTIC POREST	EL2N8	Heve orleans	32	50	4	14	19	21	13	0	0	0	0	0	153
ATLANTIC OCEAA	C6\％2064	NYC	33	25	14	67	24	7	38	44	30	18	24	0	324
ATLANTIS	SAMP	New Orleans	23	12	0	9	10	13	9	12	0	2	0	0	81
AUCRLAND STAR	C6KV／2	Baltimore	9	0	0	63	0	17	27	0	0	0	0	0	116
AURORA	WYM9567	Kodiak	0	9	0	0	0	39	22	0	0	1	12	0	74
MMORE	MC27336	Anchorage	0	0	0	0	0	2	1	0	0	1	0	0	4
B．T．ALASKA	MFOE	Long Beach	0	9	0	13	4	0	17	0	0	0	0	0	34
EAFBMBK ANDPIE	HTC9407	Chlcago	0	0	0	0	50	9	12	0	0	1	0	0	72
BARREISGION ISLAND	C60K	Miant	30	38	22	27	41	8	21	29	36	23	16	0	291
BELLOMR	3FEA4	Jacksenville	0	49	16	2	18	36	38	0	0	0	0	9	149
HERINC SEA	C6YY	Miami	4	2	0	33	0	12	0	0	0	0	0	0	51
HEPMARDO CUIETANSA A	C6K．${ }^{\text {ch }}$	New orleans	65	62	72	98	85	79	53	0	50	48	45	0	657
HLARENEY	Wคp4766	Kodiak	1	2	1	7	36	42	22	7	14	10	26	0	170
HLJE GEVINT	ЗРРम6	Seattle	17	0	0	15	293	28	73	能	56	85	0	0	656
BCHEME	SIVY	NYC	0	4	0	0	0	23	31	0	0	0	0	0	58
BCWFIN	WSx7318	Kodiak	0	0	0	0	0	0	0	0	1	0	0	0	1
BRIGHT DHOSNIX	D0095	Seattle	0	0	0	0	0	0	0	3	86	60	59	0	208
SRICHF GPAFE	3 FMY ？	Seattle	0	0	0	0	0	0	0	0	0	52	＋ 33	0	85
ERIGFI SPATE	DOCAC	seattle	0	0	0	28	0	0	0	0	0	0	＋ 0	0	28
BRDCE	Wrus	Anchorage	0	0	0	0	31	22	22	33	36	34	18	0	196
BUFFALO	WRS6134	Cleveland	0	0	0	10	0	5	0	0	0	0	0	0	15
ETPPATO SOLDIER	moxs	Houston	0	0	0	2	19	10	0	0	7	3	5	0	47
EURES HRRBOR	WQz7049	Chicago	0	0	0	0	0	0	0	0	0	16	5	0	21
C／S GLDBAL MARINEF	W0xs	Baltinore	72	327	0	74	0	0	0	0	0	0	0	0	473
CRLIFIRENTA JUPITER	ELKNO	Long Beach	26	23	11	0	32	31	4	1	44	61	5	0	238
CAPELTA VOYRGEH	C6FD4	Baltinore	9	67	1	3	60	58	60	57	47	34	24	0	430
CAPT STEVEN L BENTETT	KaXO	New Orleans	0	5	104	17	56	12	2	0	84	73	34	0	398
CRRIBAEAN MERCY	$3 \mathrm{FFV4}$	Miani	0	0	0	0	0	11	0	0	20	4	0	0	35
CRRIBE CHALLENOER	WDN3588	Kodiak	0	0	0	0	0	3	2	0	0	0	0	0	5
CRRNTVAL DESTINY	3 FKZ3	Miani	0	16	13	7	10	7	0	0	0	0	0	0	53
CRIWIVAL PARADISE	3FOB5	Miani	5	3	0	10	0	1	4	1	7	10	0	0	41
CRONIVAL 据IDE	H3v0	Miani	0	0	0	0	2	1	26	16	9	10	4	0	68

Ship Name	Call	Port	Jan				$\begin{aligned} & 8 \\ & \mathrm{Ny} \\ & \end{aligned}$	Jun	Ju1	VOS Cooperative Ship Report					
				Nib	Hax	Apr	May			Aug	tep	Oet	Hov	Dee	Total
Dackey	mxa4828	Kodiak	0	0	0	0	19	41	33	3	,	O	0	0	96
DATEHIN MARU	3FPS6	Seattle	66	69	47	98	101	96	104	100	82	92	0	0	355
DeEIWATER MTLLEEATIM	3rJa9	Horustan	0	9	0	0	59	142	144	105	5	24	19	0	499
DELAMARE BAY	MELS	Norfolk	32	8	14	26	40	4	9	15	20	15	40	0	223
greakit	MSVR	Long Beach	26	14	6	16	2	5	23	22	26	34	25	0	169
DENES VOYAGER	c6koe	Cakland	0	0	0	19	0	0	45	0	1	0	0	0	65
DINAE E.	WURT250	Rodiak	0	0	0	11	0	8	5	4	0	3	0	0	31
	OxPP2	Long Beach	0	15	6	22	24	13	52	44	12	49	39	0	276
DIRECT JABIRU	E.Yat9	Cakland	56	72	184	71	111	43	77	52	56	39	0	6	761
DIRECT MOOKAECURRA	ELWBS	Long Beach	0	0	0	64	0	23	40	0	0	0	0	0	127
[IPuct TVI	ELVES	Norfolk	0	15	3	27	40	84	49	46	76	57	25	9	428
Discovener mexp sens	HP9685	Newr Orlmans	0	0	0	0	0	0	0	0	0	0	21	0	21
DISCOVERER ENTERPRISE	3F2Q7	Now Orleans	0	0	0	0	0	0	0	0	9	0	25	0	25
DORTHE OLDENDORFF	ELXC4	Seattle	0	0	0	54	O	35	22	0	0	0	0	9	111
DREM FOSS	WYL2518	Kodiak	37	7	0	1	21	12	1	0	0	0	8	0	87
dTNCMN ISLAND	C6Js	Mlani	40	53	22	57	43	37	42	40	52	52	39	0	477
E.L. BakTLEETT	WY6244	Kodiak	0	0	0	0	5	1	0	0	0	0	0	0	6
EARL W. OCLERAY	W2E7718	cleveland	0	0	0	3	0	0	0	0	0	0	0	0	3
ERSTER ${ }^{\text {ER }}$ ERIDOS	C6JY9	Baltimore	0	1	2	0	0	0	1	0	0	0	0	0	4
mestasy	H3GR	Misai	0	0	1	40	0	0	0	0	0	0	0	0	41
EDCAR B. SPEPR	W029670	Chicago	35	6	99	194	149	128	75	123	69	34	32	0	938
EDWIN 目, GOTT	Wag4511	Chicago	6	0	10	12	2	10	6	22	4	6	9	0	87
EDVTM L	C6YC	Baltimore	0	0	13	37	22	32	27	19	16	13	25	0	203
ELL MORFO	KOGH	Mian!	0	6	0	4	0	2	1	3	0	0	0	0	10
EL. TUNODE	WGJT	Jacksonville	4	3	0	27	15	16	12	3	15	12	5	0	112
Elaplon	3 rocs	Miami	0	0	0	\bigcirc	0	0	2	0	4	44	27	0	77
EMPIRE STATE	KKPW	NYC	22	42	0	0	9	84	42	0	0	0	0	0	199
RNCHANTMENT OF THE SEAS	Laxat	Miand	1	1	0	4	0	21	11	0	0	0	0	0	38
madesvor	wavm	mre	0	0	0	0	0	0	0	0	38	0	43	0	91
EsDORAMCE	WADU	suc	21	42	0	34	23	24	31	38	45	39	4	0	302
timpurase	WCA3359	Anchorage	0	0	0	\bigcirc	0	49	40	45	52	36	16	0	238
ENELGY ENTERPRISE	wayp	naltimore	3	0	0	0	0	0	0	0	0	25	0	0	28
ENTF	9VVI	Houston	12	27	2	5	6	2	12	0	7	0	5	0	78
EITIJRPRISE	Wavy	NYC	49	4	28	35	115	35	45	23	39	3	0	0	365
ESSEN EXPRESS	Deage	Nortolk	18	26	14	¢	33	43	41	23	19	0	0	0	217
EVER DECENT	3FUOT	NYC	0	0	0	7	0	7	4	0	0	0	-	0	18.
Ever Dechiciry	3 Fcs 4	NYC	6	1	0	5	0	5	$?$	0	0	0	0	0	24
EVER DELJUXE	3FPEs	Nortolk	0	0	0	4	0	0	0	0	0	0	0	0	4
gVER DEVELOP	3FLP8	NYC	11	12	10	2	11	4	9	0	0	0	0	0	59
EVER DEVOTE	3 F 158	SYYC	21	14	10	1	17	22	17	17	13	3	11	0	146
EVER DIADEM	3 3POF8	NYC	0	0	0	0	0	2	1	0	0	9	4	0	14
Ever divinas	3rsas	Nortolk	11	0	0	11	0	1	0	0	0	0	0	0	31
EVER GENERAL	BEKHY	Baltinore	0	0	0	0	0	0	20	0	8	8	13	0	49
SVER GROUP	BRWI	Long Beach	21	13	0	37	0	0	12	0	0	0	0	0	83
EVER LTMEIC	By마T	tong Beach	0	0	0	3	0	0	0	0	9	0	0	0	3
EVER RACER	3FJL4	Sorfolk	6	0	0	4	0	1	0	0	0	0	0	0	5
EVER HENOWN	$3 \mathrm{FFR4}$	Lorg Beach	0	0	0	11	0	10	9	0	0	0	0	0	30
EVER 具Stut	3 FSA 4	Sorfolk	3	4	0	1	10	12	8	8	0	0	0	0	50
EVER RIGHT	3FNL 3	Lomg Beach	0	0	0	0	0	0	1	\bigcirc	0	0	0	0	1
SVER - RDOND	3FGNI	Long Beach	0	0	0	11	0	6	5	\%	0	0	0	0	22
EVER ULEMA	3 F 296	seattle	0	0	0	12	0	15	1	0	0	0	0	0	28
EVER JNION	3 PFGO	Seattle	12	6	3	11	0	6	7	0	0	0	0	0	45
EVEx tintgtat	3 Fx 96	Seattle	11	23	25	0	2	0	2	\%	0	0	0	0	62
EVER UNISOAN	3F\%L6	Long Beach	15	17	6	0	0	0	7	0	2	0	0	0	47
TVERETT EXPRESS	DPGD	Seattle	0	0	0	38	0	33	21	-	0	0	0	0	92
3MA	WECM	Long Beach	27	54	91	58	95	43	13	69	54	38	0	0	546
EXPLOPRER OF THE SEAS	EtMex	Miami	213	106	233	87	203	364	369	489	371	365	238	0	3038
TANTASY	ELSI6	Miand	0	0	0	0	0	12	0	-	0	\bigcirc	0	0	12
Frsctnations	С67\%9	Miani	0	0	9	0	0	0	0	6	9	6	5	0	20
FAUST	krex	Baltimore	49	32	34	50	38	42	36	43	2	21	23	0	380
FIDEE 10	WGVY	Baltinore	40	59	21	35	230	16	39	40	30	45	28	0	603
Ficaum	S6PT	Baltimore	21	4)	18	49	26	33	32	31	16	30	32	6	331
FISHPDNK	knss5085	Sodiak	0	0	0	0	6	1	1	0	0	0	0	0	8
PRANCES L	C6YE	Baltinore	42	197	37	43	139	47	36	36	40	32	22	0	671
FPhas A. Smpantz	C6PE3	Oskland	13	5	0	25	0	61.	85	70	54	3	8	0	324
CALE WIND	WR29548	Ancharage	0	3	5	7	19	22	19	13	14	12	11	0	125
OBMINI	V7EN9	Sodiak	0	0	0	0	45	50	27	12	1	0	8	0	146
cupanita Rhinmow II	vpvs5	Jacksonville	24	19	17	20	38	0	40	44	1	6	0	0	203
CIEVGA MARCI	ITMC	Long Besch	0	0	0	0	0	0	67	0	0	0	+ 0	0	67
GLADIATCR	Men5982	Ancboraga	0	0	0	0	0	12	50	0	0	0	* 0	0	62
GLOBAL LTNK	M Moy	Baltimore	0	-	0	40	-	13	24	0	31	44	0	0	152
clobal semitial	Tmaty	Baltimore	0	\bigcirc	0	1	0	0	3	1	0	0	0	0	5
GLORIOUS success	Dutis	Seattle	33	64	$\$ 17$	0	52	51	38	29	46	47	45	0	522
GOLDEA BEAR	MERY	Oakland	0	0	0	9	74	63	68	39	0	0	0	0	271
GoLDEA GAFE	KICH	Long Beach	0	0	0	43	0	18	51	0	0	0	0	0	112
GOLDEN LAXER	3FM06	Norfolk	62	31	0	40	0	37	28	0	0	0	0	0.	198
GOLDEN NOVA	3FDV6	Seactle	6	0	0	27	0	27	15	34	0	36	26	0	171
garat lamp	NFPD	Seattle	15	33	35	99	36	22	32	32	24	95	31	0	644
GREREN COVE	HC24380	Cakland	0	0	0	11	26	10	36	24	4	15	5	0	131
GREEN DALE	WC25238	Jacksonville	14	5	21	47	53	10	9	32	36	2	22	0	251
GREEN LAAKE	mpot	Baltimore	0	0	0	0	23	11	30	20	23	51	32	0	190
GREEN POIM	WCY4148	NrC	0	15	19	3	14	50	13	40	16	41	6	0	217
GRETA	WCY2853	Kodiak	0	3	0	0	21	9	0	21	18	20	0	0	92
GRETE MAERSK	canv2	Nrrc	0	0	0	40	0	10	17	26	14	15	0	0	122

Ship Name	Cal1	Port	$\underset{x+\infty}{c}$			VOS Cooperative Ship Report									
			Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	5 seg	Oct	Now	Dee	Fotal
ciarntas	Wmo2511	Anchorape	0	0	0	0	49	79	8	0	14	0	0	0	150
CUAYAMA	W236	Jackaonville	0	17	0	21	0	5	11	0	0	0	-	0	54
GJDFRIM Mhersk	OZFQ2	wrc	39	7	13	24	37	23	13	6	-	36	0	0	188
cos M. ORanelL	Kcbk	Houstan	35	145	15	15.5	31	33	20	23	18	8	5	0	492
GYPGOM KIMC	2CNN2	Baltinore	0	0	0	0	0	0	1	54	53	71	54	0	229
GYR TALCON	WCu6587	Kodiak	0	0	0	0	0	8	3	0	0	6	1	0	18
Eadesa	Elax4	Baltinore	0	0	0	28	31	51	68	35	34	76	0	0	331
EANTIN HOM KCWS	P3UXT	Long Beach	0	0	0	9	0	0	0	0	9	0	0	0	9
lovitis radotsiong	P37nts	Spatela	0	0	0	36	0	?	12	0	0	0	0	0	55
EMRHCSY ACE	H3gA	Jacksonville	0	0	0	0	39	0	17	68	18	70	62	0	274
ENTEU EMGLE	268H6	Seattle	0	0	0	0	0	0	0	0	19	9	6	0	34
butat envor	vspus	Seatele	0	0	0	0	0	0	0	0	0	35	37	0	72
ENTSOL ExCEL	vsxve	Seattle	0	0	0	0	0	0	0	0	0	38	41	0	79
BENRY HODSON ERIDGE	JKLS	Seattle	68	78	50	104	67	71	21	0	9	0	6	0	459
Genaght C, Jackscea	W. 3972	cleveland	0	0	0	0	3	0	0	0	0	0	0	0	3
BOECH DOKE	EwWP2	Nortolk	11	0	5	53	18	35	20	0	0	0	0	0	163
boltray	C6FM	New Orleans	0	0	0	0	0	0	0	0	0	0	4	0	4
HONSTE SILVIA	3xar7	Seatele	15	17	3	18	0	15	2	0	0	0	0	0	70
BOOD ISLAND	C5LD4	Miam	9	33	71	95	45	25	14	0	1	0	1	6	295
norizen	meve6	Miani	0	0	0	0	0	1	0	0	0	0	0	0	1
HILAL TROMSPORTER	C5003	Jackaonville	14	8	24	0	0	0	0	0	0	0	0	0	46
HTMNCAO	W2JB	Nortolk	0	0	0	34	0	30	32	0	0	0	0	0	96
ITYuNBAT raxedom	$37 \mathrm{FS6}$	Seattle	0	0	0	45	0	42	0	0	0	0	0	0	87
IBIS ARSOW	cecus	Seattle	0	0	0	0	42	41	0	0	0	0	0	0	83
TMAGINAFICA	C6FNR	Miani	0	4	4	25	6	17	29	2	11	0	0	0	98
ISDAMEX IMPALA	V2axi	Nortolk	0	0	0	0	0	44	55	71	B1	55	56	0	362
INDAMEX LTEERTY	ELRJ5	Nortolk	0	0	0	0	2	8	0	0	0	0	0	O	10
INDTAN OCEAN	C072063	NYC	35	27	20.	43	23	28	19	26	5	20	11	0	257
imdiana hasamor	woor3191	Cleveland	0	0	0	39	117	112	84	89	60	54	41	0	596
INDOSTRIAL CHALLENGER	WDHL	Norfolk	0	0	0	0	0	9	0	0	0	37	1	O	38
TNVINITY	E.ExT	Miani	9	0	0	0	1	4	0	0	0	0	0	0	5
INLNWD SEAS	WCJ6214	Chicago	0	0	7	0	8	4	3	1	2	1	0	0	26
ISLA DE CEDRCS	3FOM	Seattle	42	65	42	30	13	10	41	\%	0	0	0	O	243
19ta De cemens	V10x+152	Seatele	0	0	0	0	0	0	0	0	0	29	23	0	52
ISLAND CHAMPIOE	WC27046	Anchorage	0	0	0	0	1	2	0	0	3	0	0	\%	6
ISLAND VARRIOR	WCA9217	Ancharsge	0	0	0	0	0	0	0	0	0	8	8	0	16
ITB BALITMORE	W0\%ot	Baltinore	21	49	5	3	19	102	1	0	11	0	0	0	211
ITB GROTON	K05L	NYC	47	37	30	53	31	20	4	13	50	43	5	Q	341
ITE mosile	kxpem	nre	0	0	0	0	0	0	2	0	0	0	0	0	2
ITB SEN YOEX	WVDC	Miani	14	15	4	28	12	12	15	7	4	11	13	0	135
IVIze poss	WCY5442	Modiak	9	0	0	0	0	21	0	0	0	0	0	0	21
IVANTJMA MARO	38gus	Seattle	73	202	119	175	91	92	103	106	B6	83	59	0	1189
It BENRETT SOHNSTON	CSQE	Oakland	4	14	4	30	0	42	0	29	21	0	21	0	155
I, A, W, IGtachary	WTP4966	cleveland	2	0	0	0	2	0	0	0	0	5	1	0	10
JACKLYE M.	WCV7620	Chleago	2	0	0	69	13	69	18	36	15	14	6	0	242
TACRSONVILLE	WHDO	Baltinore	3	15	0	2	9	6	0	0	0	15	0	0	50
Jade pacietc	E.ars	Seattle	9	0	0	11	0	9	7	0	0	0	0	0	27
ThMES N. SULLIVAN	C6FD3	Baltinore	12	142	10	0	184	7	26	74	0	9	29	0	484
ThuES R. BARKER	WrPe657	cleveland	0	0	0	61	0	31	41	50	27	15	6	0	231
JOHE G. Muneon	WE3806	chieago	7	0	32	88	49	48	35	8	28	25	12	0	332
JOHN J. BOLSND	W2E4539	Cleveland	0	0	-	4	0	4	3	0	0	9	0	0	11
Jotus pagk	WPOS	Norfolk	0	352	\bigcirc	0	0	0	0	0	0	0	0	0	352
JOIDES RESOLITION	DSBC	\#ortolk	0	0	0	0	0	0	0	0	34	0	0	0	34
Tosepl It. Bu/0C\%	W082\% 66	Chiosgo	0	0	10	33	8	12.	3	0	8	12	0	0	86
Jubiles	3Fpys	Lang Beach	0	67	29	0	15	19	0	0	0	0	0	0	130
JUDV LIFRICO	KCKE	Elew Orleans	13	189	13	7	38	52	47	29	8	19	5	0	429
JUSTINE FOS5	WrL497i	Fodiak	0	0	0	0	15	6	0	11	10	10	24	0	66
SANEM	EL.EO2	Sent 0xleana	0	0	39	9	0	37	47	0	0	0	0	0	132
GAPITNS APASASYEV	UFIL	Seattle	12	65	3	0	0	21	29	15	3	1	0	0	148
GADITAN HKANKTM	UAGK	Seattle	0	3	72	45	41	29	40	9	0	0	0	0	288
gaplitan kotiey	tasty	Seattle	0	18	11	41	79	17	11	5	0	28	15	0	225
KAPITAN MASLOV	UBSO	Seattle	15	35	19	2	128	14.	0	0	0	0	0	0	219
KARES ANPRTE	WBS52T2	Chiongo	0	0	2	11	5	2	3	19	6	9	3	0	66
GAREA MAERSK	023CN2	Seatcle	0	0	0	0	0	10	8	0	0	0	0	0	18
RASTF TALKAVAS	TCLR	Morfolk	0	0	0	0	0	0	39	0	0	0	¢	0	39
Fhuti	WSREH	tong Besch	59	50	133	41	30	43	40	44	47	51	26	0	564
KAZIMAH	9KEL.	Bouston	0	0	0	0	0	0	5	0	0	0	0	0	5
KEE LJNG	EHFN	Seattle	72	33	45	56	0	0	67	57	68	0	0	0	398
kerisilo	3 FTNS	Senttle	0	0	0	0	0	0	O	0	0	65	24	0	89
KPA some	3 Ftes 6	Seattle	0	8	0	0	4	8	0	0	7	12	2	0	41
KRSN SHIN	YJQS2	Seattle	18	13	12	17	24	11	15	10	${ }^{3}$	5	5	0	131
kJowat	Wร\%8	Bouston	9	6	4	27	13	9	3	0	0	0	0	0	71
kenolicot\%	WCr2920	Kodiak	0	36	22	0	82	85	98	35	89	47	34	0	562
KINSMAN INDEPEMDENT	WU27811	Cleveland	0	0	0	9	11	7	0	0	1	0	0	0	28
KUPARUK RIVER	WBEL379	Anchorage	0	0	0	0	0	16	6	0	0	0	0	0	22
kURE	3vcers	Seactle	19	19	14	17	19	25	3	2	19	19	10	0	166
LAKE GUNRDIAN	Wa09082	Cnicago	0	0	0	12	0	0	0	0	0	0	0	0	12
LPCOMTE	WEEC270	Kodiak	0	1	1	1	19	15	8	4	3	0	6	\%	52
Lso paneer	3\%748	seattle	15	10.	22	55	27	42	31	46	23	24	23	0	318
LIEERTY GLORY	BEDP	Now orleans	0	0	0	0	0	19	0	0	0	0	0	-	19
LIMExTY GRact	Wares	New Orlesms	0	0	0	0	0	0	0	0	0	0	20	0	20
LIBESTY SEA	KP24	Now orleans	1	0	0	0	1	13	45	79	37	68	17	0	261
LIBERTY SPIRIT	WCPV	New orlesns	11	35	15	20	17	$1)$	0	4	0	0	3	0	126
LIBESTY stas	WCap	New orleans	11	15	8	46	98	34	71	67	55	39	20	0	464

Bhip Sinne	Call	Port	Jam	Feb	Mar	Apr	Hay	Јии	Nal	Aun	Sep	Oet	Hov	Deo	Totel 1
LIBERTY STM	WCOB	Now Orleans	45	54	0	33	66	48	16	62	30	45	16	0	415
LTBEaty mens	кр2н	Houston	0	0	0	9	1	6	8	0	28	16	29	0	82
LIHUE	WTST	Oakland	30	51	24	62	30	15	41	45	30	37	22	0	388
Lots 交．	WTDS576	Todiak	0	0	0	0	0	0	5	2	0	6	0	6	7
LOK Pruacat 1	ATzS	Suatele	17	5	0	2	0	2	3	0	0	0	0	0	29
LONO LINES	Wary	Baltinore	0	0	0	12	0	1	3	0	0	0	0	9	16
LS CAMPMEKLL．	WBD5759	Eodisk	3	8	5	16	4	7	4	5	4	1	0	6	57
LURLIEE	WEvD	Oaklana	0	32	205	48	0	162	21	0	2	19	16	0	505
LTKES RMEASSADOR	VERLS	Houston	0	0	0	0	0	0	0	0	0	1	7	9	8
LITESS DISCOFMHER	Wcwo	Houston	96	107	32	80	85	99	73	63	61	148	100	6	944
LYKES EAGLE	ELEE3	Houaton	10	8	6	9	0	22	34	0	0	0	0	0	B9
LTKES EAGLE	VSUAT	Houston	0	0	0	0	0	0	0	0	0	13	7	0	20
LTKKES EXPLOEER	WCLIA	Bouston	83	679	28	45	48	32	39	41	70	35.	48	9	1148
LYKES LIERRATOR	WCios	Houston	55	932	28	46	185	54	46	29	51	59	33	0	151日
LIKES MOTIVATOR	WMBU	Houston	58	13	15	30	45	16	11	44	37	39	24	9	373
LTKES NAVIGATOR	WONJ	Wouston	46	314	19	57	45	150	52	41	51	51	23	6	919
M／T BCertauk	wDes	Nen Orleana	0	0	0	0	32	14	23	42	42	33	35	0	221
M／V GEYSIR	WCz552B	Bortolk	0	0	0	0	0	0	0	0	0	0	57	0	57
Manscus	pewo	Mianl	12	6	7	1	\dagger	14	20	39	25	37	33	0	203
MACKINAC BRIDOE	JKES	Seattle	81	69	40	97	92	61	24	0	0	0	0	0	454
manisos vamesk	（WJn2	Oakland	26	11	9	24	0	5	5	20	3	34	37	0	174
MAERSK DUREIN	V2IW9	Lang Beach	0	0	0	0	12	27	1	31	2	44	0	0	117
MAERSE ALASKA	KaKF	Baltimore	0	0	0	0	0	0	0	0	0	0	39	0	39
Makrse arizceta	Kamg	Baltimore	54	21	205	0	51	4	6	18	8	6	6	0	333
MAERSK CALIPOPNIA	WCx5083	Miami	74	109	2	56	2	51	5	17	0	0	0	0	325
KAERSE CHERREESTON	ELRO2	NYC	24	16	18	3	13	10	26	10	0	6	0	0	120
MaErsx coetstelintios	\％RT3	Houston	0	0	0	0	0	0	0	0	0	31	20	0	51
MAEREX GEELCEVG	S62W日	NYC	0	0	0.	0	0	0	0	0	0	1	0	0	1
VAERSE 5EA	S6CW	Beattle	72	51	34	58	18	2	20	0	0	0	0	0	255
karbss sud	5653	Seattle	0	0	0	0	0	45	63	28	0	0	0	0	136
MSEREXK TAIKI	9 VIC	Balcimora	0	0	0	0	0	0	39	35	8	29	43	0	154
N大atsse TATY0	9vJo	Jackesonville	0	0	51	0	0	5	30	0	26	20	0	0	132
MaEREX TEDNESSEE	WCx3486	Hland	13	27	45	92	36	53	15	9	6	6	0	0	302
KAEREK TEKAS	WCx3249	Miand	0	60	0	5	0	0	0	0	0	0	0	0	68
ravisx wave	S6TV	maleimore	0	0	0	0	0	21	21	0	0	0	0	0	42
MAERES WIND	S6TY	Baltimore	42	51	38	51	49	53.	34	19	14	57	34	0	442
Maknsx Matesvic	оせTH2	Newark	12	5	7	9	12	15	22	35	24	0	0	0	141
MMGLESY MDERSK	OUSH2	WYC	33	14	3	6	16	29	19	22	0	0	0	0	142
VAHARASHTRA	VTSQ	Beattle	0	9	5	2	1	4	22	6	2	0	4	0	45
MAHIMAHI	whers	Dakland	15	46	28	30	47	41	36	32	22	30	27	0	354
MALOLO	WYB6327	Kodiak	39	23	22	4	0	43	42	39	51	25	5	0	305
goverat mystman	wCr3590	Modiak	0	0	1	24	39	5	14	15	0	0	0	0	83
MNHHATTAN ERIDCE	$3 \mathrm{FWL4}$	Seatcla	42	60	33	56	21	25	45	0	0	0	0	0	282
Manos	\％ DEC	Cakland	54	58	126	57	47	56	29	48	55	64	8	0	592
Mastutami	KNTIT	Dakland	25	\bigcirc	0	46	19	22	5	0	7	37	41	0	202
MARCHES MAEFSK	OwDg 2	Long feach	25	24	121	23	23	24	22	24	24	20	5	0	335
MAREN MAERSE	OW2012	Long Beach	25	63	2	27	16	22	19	2	23	7	20	0	226
MNEGRETHE MAvisg	0Y：32	Long Buach	27	0	11	2	38	5	20	55	33	24	10	0	225
MARIE MAERSE．	OULL2	NYC	22	30	25	21	25	44	12	13	1	37	29	0	259
NARTIES CMtstst	TMCB	Hoxaston	42	98	0	108	38	39	48	65	65	44	36	0	583
garine columsia	SLEKZ	Dakland	30	74	21	6	54	317	67	49	64	0	6	0	682
MARICN GREEN	PIAN	Nortolk	0	0	0	0	67	62	6	32	14	12	4	0	197
MARIT MAEDSK	ozrce	Miant	32	7	7	29	36	6.	28	4	\％	2	12	0	171
MNRK ENSNXH	WY25243	Chicago	0	0	0	11	0	8	5	0	0	0	0	0	24
NARSTAL．MAERSK	ocnoos	Nortolk	8	6	0	23	3	1	20	0	18	5	1	0	92
Meramuska	Lev4201	Kodiak	0	0	0	9	17	3	8	0	6	6	0	0	34
MATHILDE MUERSK	OJJu2	Long Beach	9	12	0	22	14	4	24	13	27	41	24	0	190
MarsicuIa	THRC	Oakland	3	20	63	62	3	10	31	0	14	5	4	0	206
gavj	Matar	Loeng Seach	1	0	0	52	267	30.	27	38	23	6	15	0	459
Matrice butm	MLDE	NYC	77	117	43	40	35	35	13	10	10	29	20	0	430
Maracuez	Mrse	Jacknonville	1	0	0	36	0	29	26	0	48	72	17	0	229
MAYVIEM MAERSE	CWES 2	Gakland	16	49	7	17	22	15	28	34	18	10	5	0	222
MESHANTK EKLYOZHEITY	UFLO	Seattle	0	0	0	15	0	0	0	0	0	0	0	0	15
Meschantr mat Covaing	UTKI	geattle	0	0	0	77	0	3	0	0	0	0	0	0	80
MESNONC PICNESS	V2．Jn	Miami	90	75	43	9	422	59	62	78	62	65	43	0	1008
MELVILLE	NECB	Lomg Beach	72	96	33	19	81	70	39	60	85	95	53	0	703
mencurier	3FFCT	Miami	9	27	0	34	14	3	0	0	0	0	0	0	73
MERCLIM	whims	Heustog	23	8	4	6	10	7	1	11	23	1	0	0	BB
MESABI MINER	WYO4356	Cleveland	0	0	0	19	59	32	1	2	0	0	2	0	115
MITTE MRERSK	CxKT2	Long Beach	54	27	0	0	22	30	31	t	18	34	＊ 8	0	212
MI－OI	Wry 3606	Todiak	0	0	0	0	0	0	0	0	0	0	11	0	11
MICHAEL O＇LEARY	WCP9556	Kodiak	0	0	0	6	0	0	0	0	0	0	0	0	5
MTCilgan	WRB4141	Chicago	4	0	12	3	1	4	4	5	1	5	0	0	19
MIDOLETONN	W83225	Cleveland	0	0	0	3	0	0	0	0	0	7	4	0	14
MTMO ASIA	BOEA	SYC	14	11	5	20	0	22	19	0	0	0	0	0	91
M0tritam	WIRRD	Oskland	70	49	15	40	57	38	39	69	51	33	39	0	500
MORO PAETI	Wemb	Oakland	1	0	76	20	5	7	17	23	46	62	25	0	282
MOL TMENOVATICE	9VVP	Oakland	0	0	0	0	19	51	44	53	31	59	43	0	300
MOL BRAVERY	3 FXXA	Oakland	61	30	119	56	50	40	30	46	19	27	11	0	529
mol colfmaus	3mrus	Seattle	45	0	0	45	0	60	67	0	0	0	0	0	217
MOL THAMES	3EFVG	Warfolk	0	0	0	0	0	0	0	27	29	9	18	0	83
moturncsix	Whmo	Souston	0	0	0	0	0	0	1	0	0	0	0	0	\pm
MOFHOCETAR	KGide	Bouston	18	12	0	20	0	19	48	0	0	0	0	0	117
mopuacsen	WMEK	Houston	34	104	1	37	25	14	13	27	27	33	14	0	329

8tip Wine	Call	Port	San	\leq				Jun	Ju1	VOS Cooperative Ship Report					
				Feb	Max	Apr	Hay			Aug	8ep	Oct	Elov	Deor	Fotal
PITTGETAO	ELIQ6	Baltimore	54	49	36	0	24	33	42	32	63	40	34	0	457
polahil hlaska	xsse	Long Beach	11	13	11	15	6	27	11	19	5	17	9	0	144
POLAR CALIFOGNIA	nexcy	Long Beach	14	B	11	18	15	14	19	16	20	24	6	0	165
potat ramme	ELPT3	Anchorage	72	145	$8 \pm$	131	46	83	97	97	56	103	66	0	2029
POLAR ENOEAVOUT	MCAL	flew orkalans	19	14	6	24	27	13	8	15	9	13	10	0	159
POLAR RESOLUTICK	MDJK	Now Orleans	0	0	0	0	0	0	0	0	2	10	5	0	17
pocan texas	TNFD	Long Beach	15	25	25	17	0	5	11	3	11	6	7	0	125
POLAR Prader	WC23758	Long Beach	16	12	31	17	12	13	18	17	5	5	0	0	146
POLARTS WOTMGER	zCAR2	New Orleans	31	52	97	3	72	81	26	25	19	15	27	0	450
potronesia	V2CA2	Dakland	0	0	0	1	0	¢	0	0	0	0	0	0	1
POMHATIAN	mrx7883	Kodiak	0	0	0	0	0	0	0	0	8	6	0	0	14
PRESSIDENT ADMMS	MPY	Dakland	58	45	177	46	50	492	59	59	46	59	40	-	1161
praserbint grant	mCr2098	Long Besch	71	28	12	57	79	65	66	52	70	64	41	0	605
PRESIDENT JACKSCed	merc	Daklana	58	55	121	27	638	41	25	26	33	22	31	0	1077
PRESIDENT KEREIEDY	MPYE	Cakland	80	45	170	149	96	42	41	57	42	34	44	0	801
presidiont potk	Mry	Cakland	65	48	131	29	75	25	12	45	63	43	42	0	578
PRESIDENT TRLDCAN	Hevip	Cakland	31	34	77	90	86	57	57	62	43	40	45	0	622
PRESIDENT WILSON	WCY3438	Long Beach	0	0	0	0	0	0	0	0	0	\bigcirc	25	0	25
prite or matrimork if	MrN2120	Baltimore	0	0	0	15	35	34	67	44	29	24	14	0	262
PRTMO BRUSCO	HeT4608	Kodiak	0	0	0	0	0	14	1	2	0	0	0	0	17
PRTNCE WILLTAM sOtMD	MsDE	Long Beach	0	0	0	8	13	1	0	0	0	$?$	0	0	29
Privati	DgVe	Norfolk	0	0	0	44	0	26	36	0	0	0	0	0	106
PROJECT ARABIA	NKP	Mland	0	0	0	0	3	21	18	3	17	12	45	0	119
Prophog may	RPFD	Long Beach	13	38	0	9	42	18	11	0	0	0	0	0	131
PLOONG SENuTOR	Dgut	Seatele	78	67	4	14	16	26	65	47	54	0	0	0	371
PUSAN SENNTCR	DgVo	Seattle	42	52	15	52	1433	48	30	14	25	22	8	0	1741
PVF PRANKLIE 3 , PHILLIPS	MMFM	Norfolk	0	0	0	0	0	7	7	0	0	0	0	0	14
QUEENSLAND SEAR	HEBM?	Horustan	0	0	0	0	0	a	0	0	0	0	17	0	17
R.J. PFEIFPER	MRJP	Long Beach	51	36	58	23	23	1	10	22	10	19	28	0	281
R,V. Day	1565709	Kodiak	0	0	0	0	3	7	2	0	1	0	0	6	19
M/V TIGLAX	123423	Anchorage	0	0	19	15	38	4	18	12	2	0	0	0	108
RATEECM BRIDGE	3EYX 9	Seattle	0	0	0	46	0	77	71	0	0	0	0	0	194
Ramger	Man5979	Sesttle	0	0	0	0	0	1	23	0	1	0	0	0	25
RAMMOND R. CRLVIN	c6PD6	Cakland	0	0	7	2	12	10	31	21	3	16	14	0	116
RESECCA LTow	WCW7977	Chicago	B	0	86	29	25	34	15	22	31	16	9	0	275
HEDPIA	Mr202735	kodiak	0	4	4	0	0	1	0	0	1	3	2	0	15
RHAPSOOY OF THE SEAS	L.EEA 4	Houston	0	0	0	2	12	6	f	5	4	2	2	0	19
Mrchand o matrursion	Wtive	Jackzonville	7	21	13	1	26	4	47	35	39	39	43	0	275
FICHARD H MATZKE	C6FES	Cakland	20	13	1	5	71	54	40	0	40	0	0	0	254
RICHARD REIS8	MBF2376	cleveland	0	0	0	1	0	15	15	0	0	0	0	0	31
MIO ASURE	\#uncr	Miami	0	0	0	26	0	13	$?$	0	0	0	0	0	46
ROBERT E, LES	KCRD	Now Orleans	0	36	9	23.	0	0	0	0	0	0	0	0	68
BDGER BLOOGH	WCPP164	Chicago	0	0	0	154	73	67	43	73	51	53	32	0	546
ROGER REVELLE	kage	Near Orlmana	45	34	31	56	58	57	85	83	64	69	8	0	593
ROVER	KCEH	Houston	0	0	0	0	0	0	0	0	0	0	34	0	34
RUEIN ARTEMIS	3FART	Seattle	0	0	0	0	0	0	0	77	62	75	44	0	258
RUBIN sobs	Dram	seatele	0	0	0	0	9	2	0	15	17	25	0	0	68
FUBIN PEARL	YJQAs	Beatele	33	38	18	35	0	26	53	0	97	28	0	0	319
Rumis STELAA	3FAPS	Seattle	0	0	0	0	163	40	9	24	21	30	9	0	287
BYNDAM	DEFY	Miars	0	0	0	1	22	0	0	0	0	0	0	0	23
SABINE PHILADELPHIA	WkPJ	New Orleans	0	0	0	0	0	0	6	0	0	0	0	0	6
SAFMARIESE TRCALA	E.arm4	Norfolk	\bigcirc	0	0	0	121	57	85	71	66	44	0	0	444
SAD RIVER	WLDE	Houston.	0	0	0	0	0	0	0	0	62	24	11	0	97
SALAY J.	W089546	Kodiak	0	0	0	9	0	2	0	1	0	3	0	0	6
SAM HOUSTCN	kDCa	Houstor	0	0	0	37	0	1	6	0	0	0	0	0	44
SAMSON MARTNER	WC23586	Koalak	4	9	4	13	9	9	5	1	16	17	30	0	117
SAMTEL L, COBG	KCDJ	Oakland	0	0	22	0	23	24	0	0	0	0	0	0	69
SAvPILA PGES	WrL4908	Kodiak	9	0	0	9	0	9	0	0	0	2	25	0	36
SAMFA MONTCA	ELaU3	Seatcla	0	0	0	20	0	10	0	0	0	0	0	0	30
SAITDI ABMA	HERX	Baltinore	0	0	9	0	0	0	0	0	0	0	24	0	24
SALDI POPVY	H25C	Houston	38	27	27	83	59	85	49	62	76	22	41	0	570
SEA BREEZE	WE*T3019	Anchorage	0	0	0	0	1	0	11	3	25	0	0	0	40
SEA CHEETA	V2PM9	Nortolk	0	0	5	0	5	18	0	0	0	\bigcirc	0	0	29
SEA FLYER	พ边 0673	Anchorage	9	0	4	9	0	1	24	21	0	11	0	\bigcirc	61
GEA MERCHANY	ELgov2	Elorfolk	116	55	33	73	0	54	98	90	104	115	69	0	807
SEA PRINCESS	KRCP	New Orleans	0	114	0	0	0	0	0	0	0	0	0	0	114
SEA SALMER	พอง8733	Anchorage	16	0	0	0	21	16	16	12	0	9	0	6	90
SEA VALOR	VBE19212	Ancharage	0	0	${ }_{0}$	0	0	10	0	3	1	0	0	\bigcirc	14
SEA VEMTUAE	WCC7684	Anchorage	0	4	0	1	0	5	50	51	45	83	35	0	285
SEA VICTORY	WBP99635	Anchorage	0	0	0	0	0	0	3	¢	0	\bigcirc	$+0$	0	2
SEA VICRORY	WCT6777	Ancharage	0	0	6	0	0	1	88	51	50	67	0	6	257
SEA VIKTMG	WCEB951	Anchorage	0	0	0	0	0	0	58	49	35	21	14	0	177
SEA-LAND CMARGER	V7AY2	Long Beach	0	0	0	0	0	0	0	0	0	42	30	0	72
SEABULK monthas	wCM9126	Anchorage	1	0	0	59	44	20	50	70	37	79	51	0	411
SEABULK PRIDE	WCr7052	Sodiak	0	0	0	0	0	0	0	0	0	24	30	0	34
SEALAND ACHIEVER	WPRED	Elouston	63	265	21	15	35	60	51	27	21	61	36	0	655
BEALAND ATLAUTIC	kHLz	Itcruston	57	150	8	49	82	12	30	49	61	32	15	0	545
SEALAND CONE?	V7AP3	Hoyfolk	0	0	0	2	0	29	20	43	41	42	34	0	211
SERLAND COMMTTMENT	KRPB	Blouston	63	893	33	63	48	65	50	78	75	67	39	0	1484
gEatati bevelockn	\%umit	Douston	36	75	29	59	46	32	40	61	51	61	33	0	523
SELLAND ENOLE	V7az	Long Beach	0	0	0	0	0	4	18	63	55	56	29	0	245
SEMLAND TLORIDA	KRHE	Houston	56	331	23	68	37	42	42	34	53	23	35	0	749
SPELAND HONDURAS	Oupp	Hown orleans	0	0	0	1	0	33	1	8	0	0	0	0	43
STKLAND TNDEPENDEMCE	WChTC	Long Eeach	24	32	206	0	15	0	0	0	0	0	0	0	277

8mip Mane	Cal1	Port	Jan	$c_{2}=$				Jus	Aal	VOS Awy	Bep	Oot	Nov	Dec	ip ReportTotal
				Feb	Har	Apr	May								
Tzout	3FDE5	Seartle	33	33	19	42	27	40	9	2	2	4	0	0	211
TEXAS CLIPPER IT	sunds	Mouston	0	133	0	0	1	64	64	4	0	0	0	-	271
THOMAS C. THOMPGCN	STDO	Seatcle	0	0	0	0	43	25	9	9	69	20	4	0	179
TtaER	wCE2134	Modiak	0	0	0	0	0	4	4	0	0	0	0	0	B
TIPAN	Henty 232	Kodisk	\pm	0	0	0	0	0	0	0	0	5	3	0	9
TMA CAMPECHE	vsxces	Boustop	0	0	0	0	0	9	4	0	0	14	20	0	47
TVE NOEVO LEON	3FPA9	Bouston	0	0	0	0	0	0	0	0	0	0	10	0	10
Thet Thindeco	veres 5	Wouston	6	0	0	0	6	0	0	0	¢	31	\#)	0	44
TOUSIEA	KIDC	Kodlak	0	0	0	0	0	0	0	0	0	2	0	0	2
TCMER BRIDCE	ELTL3	Long Beach	15	15	7	12	0	16	16	0	0	1	0	0	82
TOTOs:İRA Mary	9 VND	Seattle	0	0	0	0	67	12	0	44	-	66	\%	0	197
TRAESSMARED	3p9r3	New orleans	0	0	0	17	0	0	0	0	0	0	0	0	17
TREIN MAEREE	HSCOB	Baltimore	36	14	25	9	12	46	21	56	24	47	32	0	322
TRTANCOY	L-2Iz4	Jacksonville	0	0	0	0	0	0	14	5	5	0	0	0	24
Tridewr	WCz2913	Kodiak	0	0	0	0	4	3	7	11	13	2	10	0	50
TRINITY	WRCL	Houston	0	0	0	0	0	0	2	0	0	0	0	0	2
TRIUKPH ACE	$\mathrm{H3Ca}$	Seattle	24	9	15	10	14	5	21	0	35	0	0	0	133
THOJAN STAR	c600?	Baltimore	7	1	27	53	53	64	55	53	49	48	24	0	434
TROPIC KEY	JBDE	Miani	0	5	0	0	0	16	18	22	31	5	0	0	97
TROPIC LURE	JBPD	Miami	2	5	1	0	0	2	4	-	0	2	1.	0	17
TROPIC OPAL	J6504	Misni	117	87	124	105	33	59	2	0	0	0	0	0	527
TUSTUMENA	Wevam	Kodiak	24	0	1	7	18	17	19	16	34	40	2	0	178
TYCOM RELTMNCE	V7cz2	Seattle	0	0	0	0	1	74	99	18	49	21	0	0	262
TYOAK RESPONDER	vicrs	sesttle	0	0	0	0	0	0	91	54	0	78	62	6	285
TYCEEER	Wths	Anchorage	0	0	0	0	44	28	21	17	17	13	4	0	144
TMITED SPIRTT	ELYB2	Seattle	63	52	42	61	46	Tt	24	8	11	22	7	0	420
USOGC ACTIVE WaxC 618	Notr	Sesttle	0	0	19	63	0	0	0	0	11	16	0	0	109
USCOC MCUSHNET MMBC 167	, mbita	Kodiak	0	0	0	0	3	0	0	0	0	0	6	0	9
USC0C ALEX HALEY	NZPPO	Kodlak	24	26	1	0	3	5	5	4	2	0	0	0	71
Uscge muanmes (MLB 392)	NODK	Chicago	0	0	0	2	0	0	1	0	0	0	0	0	3
USCOC PIREBUSH ML. 393	Nobl.	Kodiak	0	0	0	1	0	0	-	6	0	3	0	0	4
USCOC GEMTINA	NBHP	Mlant	0	0	0	4	0	7	0	0	0	0	5	0	16
Uscac sumithos mhac 715	NH00	Long Beach	0	0	0	0	0	1	1	4	0	0	1	0	7
USCOC HARSIEY LANE	Nabic	Norfolk	0	0	0	0	0	0	6	0	2	3	0	0	5
USCOC HEALY WhO3-20	NSPP	Seattle	0	0	0	0	47	64	41	67	75	25	0	\bigcirc	300
uscoc matmat mar	NRLX	chieago	0	0	0	0	0	0	2	0	0	0	0	-	2
USCOC MACKIM	NECKP	Chicago	0	0	0	0	0	0	18	0	0	0	0	0	10
USOGC MELION (WEEC 717)	MMEL	Seattie	0	0	0	0	0	0	0	0	0	0	1	0	1
USCOC MIDGETF (H0HE 7261	N0/m	Seattle	0	0	349	0	0	0	6	0	0	0	0	6	349
USCOC MORTHLAND WMEC 904	NLGF	Storfolk	0	0	0	21	0	24	31	1	1	0	0	0	68
USDOC POLAR SEA CMAGE 1	NROD	Seattle	111	218	77	113	0	0	24	0	0	0	28	0	571
USCOC POLAR STASt (MRACA I	3 Brg	Seatele	\$1	65	33	1	0	0	125	116	71	13	0	0	509
U8COC SEDGE 似8 4021	NODU	Anchorage	0	0	0	0	0	0	1	0	0	0	1	0	2
USCOC SPAR	NJAR	Kodiak	0	0	0	0	6	0	2	5	0	0	2	0	15
Uscoc sitadikast IMoter 62	NS7F	Seattle	0	0	102	14	0	4	1	0	0	2	0	0	123
USCOC STCRIS (WMEC 38)	smote	Kodiak	0	0	0	0	0	0	0	0	1	0	0	0	1
USCOC SUNOEN IWLB 4041	Noow	Chicago	0	0	11	13	0	3	0	0	0	0	1	0	28
Uscoc mocokthat (VL.a 407)	Nopes	Seattle	0	0	0	38	0	0	0	0	0	0	0	0	38
USMS 18T LT. HARCAY L. MA	NDFH	Jacksotiville	0	3	0	0	2	\bigcirc	13	0	1	2	22	0	43
tuns ALTATR	NFZA	Sortolk	0	0	0	8	0	0	0	0	0	0	0	0	B
usns Auncrax (7-aty 172)	SIGP	Norfolk	0	0	0	31	0	0	0	0	0	0	1	0	32
USNS BEOCS C. HEEZEN	MBID	Etew Oxleana	0	0	0	1	0	31	27	0	0	0	0	0	59
Usnes JOwn MCDONAEL 2 (T-A	NJMD	New Orleans	0	0	0	4	0	0	50	0	0	0	0	0	54
USNS Maly sears it-acs 6	\%mot	Houstor	0	0	0	0	0	0	0	0	\bigcirc	18	22	0	40
USins vexidowl	SEMTK	Elew Orleans	0	0	0	0	0	2	3	0	0	0	0	0	5
USMS NAVAJO_(TATF-1691	NOYK	Long Beach	0	0	0	9	2	5	5	0	0	7	9	0	37
tises ragutus	NLM	New Orleans	0	0	0	0	0	0	8	0	0	0	9	0	8
USNS GEAY	H2TM	Newn orleana	0	6	0	0	0	28	3	0	0	0	9	0	31
USNS grasta TAE-33	NFWC	Seattle	0	0	48	52	304	0	18	0	0	0	0	0	432
Uens stamik	Nzad	New Orleans	0	0	0	0	8	8	11	12	9	11	3	0	62
VIKIENA STAR		Fodiak	0	0	0	0	0	3	2	1	2	9	0	0	17
VLADIVOSTCS	UBXP	Seattle	43	15	26	70	85	253	60	69	61	47	33	0	762
VOVAGER OF THE SEAS	ELWJ7	Miani	0	3	0	7	0	0	1	0	0	0	0	0	11
WARRIOR	mun4383	Anchorage	36	38	9	12	0	74	0	0	0	0	0	0	169
MVATHERSIAD IT	MCT5653	Soattle	0	0	0	0	0	0	0	0	0	3	0	0	3
Heccoen	MSD7079	Seattle	0	0	0	143	90	99	22	68	69	95	50	0	636
mestern mutdis	C6JQ9	Baltimore	100	63	50	79	90	87	96	46	67	0	0	0	708
MESTERN NAVIGAROR	M6x7602	Anchorage	0	0	0	0	0	0	2	0	0	0	0	0	2
MESTER R RAnger	MBn3008	Anchorage	6	0	0	3	0	2	0	0	4	0	0	0	15
MESTMKRD VEWTURE	KCHJB	Seattle	38	25	2 B	74	38	40	43	39	22	47	35	0	429
MESTMOCD ANETTE	C6CO9	Seattle	45	10	17	53	32	38	33	39	38	22	2	0	339
MESTMOCD HELINTA	H91m	Seattle	48	48	8	0	32	32	27	31	32	26	29	\bigcirc	313
NESTWOOD BCED	Lemen 4	Seattle	51	80	64	24	138	53	61	47	74	45	37	0	675
MESTMOOC HREEZE	LNOT4	Sesttle	65	50	801	100	75	67	38	74	41	35	41	0	1388
NESTMOOD CLABO	$15 / \mathrm{cgm}$	Sesttle	41	31	505	33	312	17	25	0	0	29	0	0	493
WESTMOOD JACO	H914.	Seatrle	0	0	0	0	26	65	31	1	26	22	9	0	181
WESTMOOD MARIAEEE	C6gos	Seattle	42	43	95	49	44	44	43	61	39	49	33	0	542
W8Sthoob fatwren	C65T)	Sesttie	0	0	0	0	0	0	0	0	0	36	31	0	67
WILPRED SYKRS	Wha2769	Chicago	1	0	0	0	0	15	9	0	0	2	2	0	29
WTLLTAM E. CRAIN	ElOR2	Cakland	0	0	85	5	0	0	0	0	0	0	0	0	90
WtLsced	Naxp	New Orleans	0	13	0	11	36	5	38	7	32	24	14	0	174
WORLD SPIPIT	E4ticy	Seatele	30	45	0	20	4	15	39	50	34	12	24	6	277
YTRIY 9STROVSKTY	UMOJ	Seattle	0	0	0	B4	0	95	4	0	0	0	0	0	183
zanchar	parn	Miami	0	0	\%	0	1	0	。	0	0	0	0	0	1

植ip Shame	Cal1	Port		3ma	Fab	Mar	Npr	May	Itan	3 al	Nug	Eiep	Det	Hav	Dec	Total
をESITH	E1005	Mian．		24	10	B	4	7	7	12	0	0	0	0	0	72
2．antit	N®Y3237	Foditak	sk	0	9	0	9	0	0	1	0	1	2	1	0	5
ZIM AMCRICA	42an	EYC		57	27	37	39	27	43	60	4	0	53	0	0	347
さ1M 月ち工ス	4xFB	Rew	Orleamb	47	38	15	44	35	12	16	50	44	14	2	0	317
EIM IGRAEL	43 Cax	thern	Orleana	23	18	16	29	8	37	48	10	4	45	0	0	238
EIM ITALTA	4700T	Blen or	Orleanir	36	62	18	55	51	35	19	37	57	30	0	0	395
ZIH KCREA	4 maL	Mian		25	37	D	44	43	15	34	20	0	1	0	0	219
TIM VTRGTNTA	$9 \mathrm{aOC7}$	BYYC		0	0	0	0	9	0	0	0	9	0	3	0	3
	Tan	Teb	Her	Appr	Nay		m	Jul			Emp	Det		or	Dee	Total
Toeal 构ipaz756 Totala：	12455	21791	1314	18319	21431		005	17055	14		13841	13302		6.2	0	175931

PMO－Gdynia Port Meteorological Officer，Jozef Kowalewski， Retires after 45 Years of Service

Jozef Kowalewski，the Gdynia，Poland Port Meteorological Officer，retired from service on August 1， 2001.
Jozef Kowalewski began his official government career 45 years ago when，upon graduating from Gdansk University，he began working with the Institute of Meteorology and Water Management（PIM） in Gdynia．

In September 1957，in connection with celebrations of the International Geophysical Year when mandatory observations were introduced on some selected Polish ships，he assumed the duties as PMO in Gdynia．
After introducing the voluntary scheme of observations（VOS）program，the number of participating vessels was grew steadily until it included almost all of polish merchant shipping．
Thanks to Kowalewski＇s commitment and compassion for the duties of PMO， 428 of 544 vessels that were encouraged by him to join the program responded positively．
During the 45 years of his activity as PMO， 4450 log books were collected with over 762000 observations stored， 90% of which were verified as being sent to appropriate WMO centers

Kowalewski used to conduct about 200 inspections yearly，making over 11000 visits accomplished in the period from 1957 to 2002.

During the course of the routine checking of instruments，and providing instructions and consulting，Kowalewski never missed the opportunity to discuss his shared interest of weather and meteorological phenomena with crew members．
Jozef Kowalewski prepared successive
revised issues of meteorological log books and code books for shipping，adequate for changes in WMO standards．He created indispensible documentation for introducing BATHY and TESAC codes for the Polish fleet．He also took part in thepreparation of printing instruction manuals for the TURBO 1 program．

Not one for sitting still，
Kowalewski performed PMO duties while also serving as Chief Specialist of Maritime
Meteorology in the Meteorological Institute in Gdynia．
Many a time he commanded research expeditions within the Baltic area．He also visited the ＂exotic＂port calls of Antarctica， Iceland，Senegal，and Argentina． In 1974，Kowalewski participated in a research voyage to the Atlantic equator zone－GARP program．In 1976 he spent one month on board the research vessel of the Gdynia Maritime Academy participating in an educational voyage to Iceland．
It was not the first time that he cooperated with Scientific Institutes contributing to establishing stronger ties between educational sources and the Polish Meteorological Service．
At the turn of 1977／1978，he took part in a research expedition with students to Antarctica and spent three months on Arctowski，the Polish polar station．
From 1978 to 1988，Kowalewski was engaged in a special meteorological research program on the Baltic sea，sailing frequently

on board Polish ferry vessels servicing the route between Gdansk and Helsinki．
In the period from 1958 to 1998，Jozef Kowalewski spent over 2000 days at sea， totally fulfilling a teenager＇s dream of sea adventures and satisfying his deep interest in meteorology．
Presently，though already retired，
Kowalewski is still active as PMO．He visits vessels lying in Polish ports as he used to do previously，waiting for the successor who will continue his work．

We wish Jozef and his wife Bronilawa fair winds and following seas．

Meteorological Services-Observations

U.S. Port Meteorological Officers

Headquarters

David McShane
Voluntary Observing Ship Technical Leader
National Data Buoy Center
Building 1100, Room 353A
Stennis Space Center, MS 39529-6000
Tel: 228-688-1768
Fax: 228-688-3153
E-mail:david.mcshane@noaa.gov
Robert A. Luke
Voluntary Observing Ship Program Leader
National Data Buoy Center
Building 1100, Room 353D
Stennis Space Center, MS 39529-6000
Tel: 228-688-1457
Fax: 228-688-3153
E-mail: robert.luke@noaa.gov

Atlantic Ports

Robert Drummond, PMO
National Weather Service, NOAA
2550 Eisenhower Blvd, Suite 312
P.O. Box 165504

Port Everglades, FL 33316
Tel: 954-463-4271
Fax: 954-462-8963
E-mail: robert.drummond@ noaa.gov
Lawrence Cain, PMO
National Weather Service, NOAA
13701 Fang Road
Jacksonville, FL 32218-7933
Tel: 904-741-5186
Fax: 904-741-0078
E-mail: larry.cain@noaa.gov
Peter Gibino, PMO, Norfolk
National Weather Service, NOAA
4034-B G. Washington Highway
Yorktown, VA 23692-2724
Tel: 757-877-1692
Fax: 757-877-9561
E-mail: peter.gibino@noaa.gov
James Saunders, PMO
National Weather Service, NOAA
Maritime Center I, Suite 287
2200 Broening Highway
Baltimore, MD 21224-6623
Tel: 410-633-4709
Fax: 410-633-4713
E-mail: james.saunders@noaa.gov

Tim Kenefick, PMO, New York/New Jersey
National Weather Service, NOAA
110 Lower Main Street, Suite 201
South Amboy, NJ 08879-1367
Tel: 732-316-5409
Fax: 732-316-7643
E-mail: timothy.kenefick@noaa.gov

Great Lakes Ports

Amy Seeley, PMO
National Weather Service, NOAA
333 West University Dr.
Romeoville, IL 60446-1804
Tel: 815-834-0600 Ext. 269
Fax: 815-834-0645
E-mail: amy.seeley@noaa.gov
George Smith, PMO
National Weather Service, NOAA
Hopkins International Airport
Cleveland, OH 44135
Tel: 216-265-2374
Fax: 216-265-2371
E-mail: george.e.smith@noaa.gov
Gulf of Mexico Ports
John Warrelmann, PMO
National Weather Service, NOAA
New Orleans International Airport
Box 20026
New Orleans, LA 70141
Tel: 504-589-4839
E-mail: john.warrelmann@noaa.gov
Chris Fakes, PMO
National Weather Service, NOAA
Houston Area Weather Office
1620 Gill Road
Dickinson, TX 77539-3409
Tel: 281-534-2640 Ext. 277
Fax: 281-337-3798
E-mail: chris.fakes@noaa.gov

Pacific Ports

Derek LeeLoy
Ocean Services Program Coordinator
National Weather Service Pacific Region HQ
Grosvenor Center, Mauka Tower
737 Bishop Street, Suite 2200
Honolulu, HI 96813-3201
Tel: 808-532-6439
Fax: 808-532-5569
E-mail: derek.leeloy@noaa.gov
Robert Webster, PMO

National Weather Service, NOAA
501 West Ocean Blvd., Room 4480
Long Beach, CA 90802-4213
Tel: 562-980-4090
Fax: 562-980-4089
E-mail: bob.webster@noaa.gov
Robert Novak, PMO
National Weather Service, NOAA
1301 Clay Street, Suite 1190N
Oakland, CA 94612-5217
Tel: 510-637-2960
Fax: 510-637-2961
E-mail: bob.novak@noaa.gov
Patrick Brandow, PMO
National Weather Service, NOAA
7600 Sand Point Way, N.E.
BIN C15700
Seattle, WA 98115-6349
Tel: 206-526-6100
Fax: 206-526-4571 or 6094
E-mail: pat.brandow@noaa.gov
Richard Courtney
National Weather Service, NOAA
600 Sandy Hook Street, Suite 1
Kodiak, AK 99615-6814
Tel: 907-487-2102
Fax: 907-487-9730
E-mail: richard.courtney@noaa.gov
Debra Russell, OIC
National Weather Service, NOAA
Box 427
Valdez, AK 99686-0427
Tel: 907-835-4505
Fax: 907-835-4598
E-mail: debra.russell@noaa.gov
Larry Hubble
National Weather Service Alaska Region
222 West 7th Avenue \#23
Anchorage, AK 99513-7575
Tel: 907-271-5135
Fax: 907-271-3711
E-mail: larry.hubble@noaa.gov

SEAS Field Representatives

GOOS Center Manager
Steve Cook
8604 La Jolla Shores Drive
La Jolla, CA 92037-1508
Tel: 858-546-7103
Fax: 619-546-7185
E-mail: steven.cook@noaa.gov

GOOS Staff
John Steger, LCDR
AOML/GOOS Center
4301 Rickenbacker Causeway
Miami, FL 33149-1026
Tel: 305-361-4356
Fax: 305-361-4366
E-mail: john.steger@ noaa.gov
Northeast Atlantic SEAS Rep.
Jim Farrington
SEAS Logistics/AMC
439 West York Street
Norfolk, VA 23510
Tel: 757-441-3062
Fax: 757-441-6495
E-mail: james.w.farrington@ noaa.gov
Pacific Northwest SEAS Rep.
Bob Decker
SEAS Logistics/PMC
7600 Sand Point Way, NE, Bin C15700
Seattle, WA 98115-0700
Tel: 206-526-4280
Fax: 206-526-4281
E-mail: bob.decker@noaa.gov
Southwest Pacific SEAS Rep.
Carrie Wolfe
Southern California Marine Institute
820 S. Seaside Avenue
San Pedro, Ca 90731-7330
Tel: 310-519-3181
Fax: 310-519-1054
E-mail: hbbio048@csun.edu

Southeast Atlantic SEAS Rep.
Ann-Marie Wilburn
AOML/GOSO Center
4301 Rickenbacker Causeway
Miami, FL 33149-1026
Tel: 305-361-4336
Fax: 305-361-4366
E-mail: wilburn@aoml.noaa.gov
Global Drifter Program
Craig Engler
AOML/PHOD
4301 Rickenbacker Causeway
Miami, FL 33149-1026
Tel: 305-361-4439
Fax: 305-361-4366
E-mail: craig.engler@noaa.gov

NIMA Fleet Luaisons

Joe Schruender, East Coast Fleet Liaison Christopher G. Janus, West Coast Fleet Liaison
ATTN: GIMM (MS D-44)
4600 Sangamore Road
Bethesda, MD 20816-5003
Tel: 301-227-3120
Fax: 301-227-4211
E-mail: schruendj@nima.mil
janusc@nima.mil

Meteorological Services

Jack Cossar, PMO
Meteorological Service of Canada 6 Bruce Street
St. John's, Newfoundland A1N 4T3
Tel: 709-722-4798
Fax: 709-722-5097
E-mail: jack.cossar@ec.gc.ca
Michael Riley, PMO
Meteorological Service of Canada 700-1200 West 73rd Avenue
Vancouver, British Columbia V6P 6H9
Tel: 604-664-9136
Fax: 604-664-9195
E-mail: mike.riley@ec.gc.ca

Ron Fordyce, Supt. Marine Data Unit
Rick Shukster, PMO
Roland Kleer, PMO
Meteorological Service of Canada
Port Meteorological Office
100 East Port Blvd.
Hamilton, Ontario L8H 7S4
Tel: 905-312-0900
Fax: 905-312-0730
E-mail: ron.fordyce@ec.gc.ca rick.shukster@ec.gc.ca roland.kleer@ec.gc.ca

Richard Dupuis, PMO
Meteorological Service of Canada
100 Alexis Nihon Blvd., 3rd Floor
Ville St. Laurent, Quebec H4M 2N8

China

YU Zhaoguo
Shanghai Meteorological Bureau
166 Puxi Road
Shanghai, China

Denmark

Commander Lutz O. R. Niegsch
PMO, Danish Meteorological Inst.
Lyngbyvej 100, DK-2100
Copenhagen, Denmark
Tel: +45 39157500
Fax: +45 39157300

United Kingdom

Headquarters

Capt. E. J. O'Sullivan
Marine Observations Manager, Met. Office
Observations Supply - Marine Networks
Beaufort Park
Easthampstead, Wokingham
Berkshire RG40 3DN
Tel: +44-1344 85-5723
Fax: +44-1344 85-5873
Email: edward.osullivan@metoffice.com

Bristol Channel

Captain A Maytham MM, FRMetS, PGCE
Met Office
Port Met Officer - Bristol Channel
Titan House Rm 107
Cardiff Bay Business Centre
Lewis Road
Cardiff. CF24 5BS
Tel: +44 (0) 2920451323
Fax:+44 (0) 2920451326
E-mail: austin.maytham@metoffice.com

East England

Captain John Steel, PMO
Customs Building, Albert Dock
Hull HU1 2DP
Tel: +44 01482320158
Fax: +44 01482328957

Northeast England

Captain Gordon Young, PMO
Able House, Billingham Reach Ind. Estate
Billingham, Cleveland TS23 IPX
Tel: +44 0642560993
Fax:+44 0642562170

Northwest England

Colin B. Attfield, PMO
Room 331, Royal Liver Building
Liverpool L3 1JH
Tel:+44 01512366565
Fax: +44 01512274762

Scotland and Northern Ireland

Captain Peter J. Barratt, PMO
Navy Buildings, Eldon Street
Greenock, Strathclyde PA16 7SL
Tel: +44 01475724700
Fax: +44 01475892879

Southeast England

Captain Harry H. Gale, PMO
Trident House, 21 Berth, Tilbury Dock
Tilbury, Essex RM18 7HL
Tel: +44 01385859970
Fax: +44 01375859972

Southwest England

Captain James M. Roe, PMO
8 Viceroy House, Mountbatten Business Centre
Millbrook Road East
Southampton SO15 1HY
Tel: +44023 80220632
Fax: +44 02380337341

France

Yann Prigent, PMO
Station Mét., Noveau Semaphore
Quai des Abeilles, Le Havre
Tel: +33 35422106
Fax: +33 35413119
P. Coulon

Station Météorologique
de Marseille-Port
12 rue Sainte Cassien
13002 Marseille
Tel: +33 91914651 Ext. 336

Germany

Volker Weidner, PMO
Deutscher Wetterdienst
Met. Hafendienst
Postfach 700421
22004 Hamburg
Tel: 04031908826

Volker Weidner, PMO
Peter Gollnow, PMO
Horst von Bargen, PMO
Deutscher Wetterdienst
Jenfelder Allee 70a
22043 Hamburg
Tel: +49 4066901411
Fax: +49 4066901496
E-mail: pmo@dwd.de

Henning Hesse, PMO
Deutscher Wetterdienst
An de Neuen Schleuse
27570 Bremerhaven
Tel: +49 4717004018
Fax: +49 4717004017
E-mail: pmo@dwd.de

Ulrich Ranke, PMO
Deutscher Wetterdienst
Flughafendamm 45
28199 Bremen
Tel: +49 4215372163
Fax: +49 4215372166
E-mail: pmo@dwd.de
Christel Heidner, OMP
Christine Bergs, PMO
Deutscher Wetterdienst
Seestr. 15a
18119 Rostock
Tel: +49 3815438830
Fax: +49 3815438863
E-mail: pmo@dwd.de

Meteoroligical Services

Greece

George E. Kassimidis, PMO
Port Office, Piraeus
Tel: +301 921116
Fax: +3019628952

Hong Kong

C. F. Wong, PMO

Hong Kong Observatory
134A Nathan Road
Kowloon, Hong Kong
Tel: +852 29263113
Fax: +852 23119448
E-mail: hkopmo@hko.gcn.gov.hk

Israel

Hani Arbel, PMO
Haifa Port
Tel: 97248664427

Aharon Ofir, PMO
Marine Department
Ashdod Port
Tel: 97288524956

Japan

Headquarters
Kanno Yoshiaki
Marine Div., Climate and Marine Dept.
Japan Meteorological Agency
1-3-4 Otemachi, Chiyoda-ku
Tokyo, 100-8122 Japan
Fax: +03-3211-6908
Email: ykanno@met.kishou.go.jp
Utsunomiya Tadayoshi, PMO
Kobe Marine Observatory
1-4-3, Wakinohamakaigan-Dori, Chuo-ku Kobe,
651-0073 Japan
Fax: +078-222-8946

Yazawa Yasushi, PMO
Nagoya Local Meteorological Observatory
2-18, Hiyoricho, Chigusa-ku
Nagoya, 464-0039 Japan
Fax: +052-762-1242

Uwabe Willy, PMO
Yokohama Local Met. Observatory
99 Yamate-cho, Naka-ku
Yokohama, 231-0862 Japan
Fax: +045-622-3520

Mariners Weather Log

Singapore

Edmund Lee Mun San, PMO
Meteorological Service, PO Box 8
Singapore Changi Airport
Singapore 9181
Tel: +65 5457198
Fax: +65 5457192

South Africa

C. Sydney Marais, PMO
c/o Weather Office
Capt Town International Airport 7525
Tel: + 2721-934-0450 Ext. 213
Fax: +2721-934-3296
Gus McKay, PMO
Meteorological Office
Durban International Airpot 4029
Tel: +2731-422960
Fax: +2731-426830
Mnikeli Ndabambi
Assistant Director, Meteorological Training
South African Weather Bureau
Tel: +2712-309-3090
Fax: +2712-323-4518
E-mail: mnikeli@ weathersa.co.za

Sweden

Morgan Zinderland
SMHI
S-601 76 Norrköping, Sweden
Tel: 516-924-0499 (0227)

United States Government
 INFORMATION

Credit card orders are welcome!

Order Processing Code:

*5862

Fax your orders (202) 512-2250
Phone your orders (202) 512-1800
\square YES, please send subscriptions to:
Mariners Weather Log (MWL) at \$13.00 (\$18.20 foreign) per year (2 issues)

The total cost of my order is $\$$ \qquad .
Price includes regular shipping \& handling and is subject to change.

Name or title	(Please type or print)
Company Name	Room, floor, suite
Street Address	State
City	

Daytime phone including area code

Purchase order number (optional)

For privacy protection, check the box below:
Do not make my name available to other mailers
Check method of payment:
\square Check payable to: Superintendent of Documents

Mail to: Superintendent of Documents, PO Box 371954, Pittsburgh PA 15250-7954 Important: Please include this completed order form with your remittance. Thank you for your order!
U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Data Buoy Center
Building 1100, Room 353D
Stennis Space Center, MS 39529-6000
Attn: Mariners Weather Log
Address Correction Requested
Special
OFFICIAL BUSINESS
Standard Rate
PENALTY FOR PRIVATE USE \$300

In this Issue:

Report on the Explosion aboard the fishing vessel Galaxy 6

New PMO in Valdez, Alaska .7

Marine Weather Reporting at Maine Maritime Academy 8

Shipwreck: Maurice Degagnes 19

Gdynia PMO Retires after 45 Years . 99

